RESEARCH ARTICLE

Fuzzy g^{##}- Connectedness in Fuzzy Topological Spaces Kiran G Potadar¹, Sadanand N Patil²

¹Department of Mathematics, Angadi Institute of Technology & Management, Belagavi, Karnataka, India. ²Department of Mathematics, Jain Institute of Technology, Davangere, Karnataka, India.

ABSTRACT: In this paper, we introduced new results in fuzzy connected spaces, that is $g^{##}$ -connectedness in fts by using $g^{##}$ -open sets, $g^{##}$ -closed sets in fts. We studied some of their properties and also investigated their characterization. Further this work lead to the study of disconnectedness of fuzzy $g^{##}$ -closed sets.

KEYWORDS: Fuzzy $g^{##}$ -closed set, Fuzzy $g^{##}$ -Connectedness, Fuzzy $g^{##}$ -separated, Fuzzy super $g^{##}$ -connectedness, Fuzzy strongly $g^{##}$ -connectedness

https://doi.org/10.29294/IJASE.5.3.2019.1017-1020

© 2019 Mahendrapublications.com, All rights reserved

1. INTRODUCTION

L.A. Zadeh [1] introduced the concept of 'fuzzy subset' in 1965. Fuzzy subset provides a natural framework for generalizing concepts of general topology into the Fuzzy topological spaces. Levine [2] introduced generalized closed sets and strongly connected sets in general topology in 1965. Dense topology was introduced in 1968. The D space is said to be a topological space, if every non empty open set is dense in it. A super connected space is said to be a topological space, if it has no proper regular open subset and the space is super connected in D space. In 1968, C.L. Chang [3] introduced the structure of fuzzy topology as an application of fuzzy sets to general topology. Which includes a open set, closed set, neighborhood, interior set, continuity and compactness and connectedness. Hutton [4] in 1975 introduced normality in fuzzy topological spaces. The space which has no proper fuzzy clopen set is fuzzy connected space; otherwise it is fuzzy disconnected space. Pu and Liu [5] in 1980 defined connectedness by using the concept of the fuzzy closed set. Lowen [6] in 1981, defined an extension of connectedness in a particular family of fuzzy topology. Zheng [7] in 1984, introduced fuzzy path and fuzzy connectedness. In 1985, Fatteh and Bassam[8] studied further the notation of fuzzy super connected and fuzzy strongly connected spaces for a crisp set in a fuzzy topological spaces. In 1991, Ajmal and Kohli[9] extended the notion of connectedness to an arbitrary fuzzy set, c-zero dimensional , strongly zero connected , total disconnected and Local connectedness in fuzzy topological spaces. In 2004, Balasubramanian and Chandrasekhar [10] studied connected and disconnectedness by using α open sets in fuzzy topological spaces. Hassan [11] in 2007, studied some kind of fuzzy connected spaces.

In this paper, by using $g^{\#}$ -closed and $g^{\#}$ - open fuzzy set, which are obtained by generalization via α open set [12,13]. we introduced few more results as an extension of a connected spaces like, Fuzzy $g^{\#}$ -Connectedness,

Fuzzy super $g^{\#\#}$ -connectedness, Fuzzy strongly $g^{\#\#}$ -connectedness.

2. PRELIMINARIES

In this paper we shall denote a fuzzy topological spaces by (X,T) and (Y, σ) where X and Y are sets and T and σ is are fuzzy topologies. The notations δ , γ , μ , α , β , u, v are ued to denote fuzzy sets in fts.

Definition 2.01: A fuzzy set (X,T) is said to be connected, if it has no proper fuzzy clopen set. Otherwise it is called fuzzy disconnected. [4]

Definition2.02: A fuzzy set λ in fts (X,T) is proper if $\lambda \neq 0$ and $\lambda \neq 1$.[4]

Definition 2.03: A fts (X,T) is called fuzzy super connected if it has no proper fuzzy regular open set. [8] **Definition2.04:** An fts (X,T) is called fuzzy strongly connected, if it has no non zero fuzzy closed sets *f* and *k* such that $f + k \le 1$. If *X* is not fuzzy, strongly connected

then it will be called as fuzzy weakly disconnected. [8] **Definition 2.05:** A fuzzy set (X,T) is said to be fuzzy α -connected, if (X,T) has no proper fuzzy set λ which is both fuzzy α -open and fuzzy α -closed. [10]

Definition 2.06: A fuzzy *λ* in a fts (X,T) is called fuzzy regular α-open set, if $\lambda = (\underline{\lambda})_{0}$.[10]

Definition 2.07: A fuzzy topological spaces X is said to be a T_1 -fuzzy topological space, if every fuzzy point in X is fuzzy closed.[5]

Definition 2.08: A fuzzy topological space X is aid to be fuzzy locally connected at a fuzzy point x_{α} in X, if for every fuzzy open set μ in X containing x_{α} , there exist a connected fuzzy open set δ in X such that $x_1 \leq \delta \leq \mu$. [9]

3. FUZZY $g^{##}$ - CONNECTEDNESS

Definition 3.01: A fts (X,T) is said to be fuzzy $g^{\#\#}$ -connected (briefly $fg^{\#\#}$ -connected), if fts (X,T) has no proper fuzzy $g^{\#\#}$ -open and $g^{\#\#}$ - closed sets, where a fuzzy set δ in (X,T) is proper, if $\delta \neq 0$ and $\delta \neq 1$.

*Corresponding Author: kgpotadar@gmail.com Received: 21.12.2018 Accepted: 18.01.2019 Published on: 27.02.2019

Theorem 3.02 : A fts (X,T) is fuzzy $g^{\#\#}$ -connected, iff it has no non zero fuzzy $g^{\#\#}$ -open sets δ_1 and δ_2 such that $\delta_1 + \delta_2 = 1$.

Proof. If δ_1 and δ_2 exist, then δ_1 is a proper fuzzy $g^{\#}$ - closed and $g^{\#}$ -open set in (X,T). If fts (X,T) is not fuzzy $g^{\#}$ -connected. Then it has a proper fuzzy set δ_1 which is fuzzy $g^{\#}$ -open set and also a fuzzy $g^{\#}$ - closed set. Assume $\delta_2 = 1 - \delta_1$ is a fuzzy $g^{\#}$ -open set in X. Then δ_2 is a fuzzy $g^{\#}$ -open set, such that $\delta_2 \neq 0$ and $\delta_1 + \delta_2 = 1$.

Corollary 3.03: A fts (X,T) is fuzzy $g^{\#}$ -connected, iff it has no non zero fuzzy sets δ_1 and δ_2 such that $\delta_1 + \delta_2 = 1$, $\overline{\delta_1} + \delta_2 = \delta_1 + \overline{\delta_2} = 1$.

Definition 3.04: If A < X, X is an fts, then A is said to be fuzzy $g^{##}$ -connected subset of (X,T), if A is a fuzzy $g^{##}$ -connected space a fuzzy subspace of (X,T).

If A < Y < X, then A is a fuzzy $g^{##}$ -connected subset of (X,T), iff it is a fuzzy $g^{##}$ -connected subset of the fuzzy subspace Y of X.

Theorem 3.05: If (X,T) is fts and Let A is a fuzzy $g^{\#\#}$ -connected subset of (X,T). Let δ_1 and δ_2 are non zero fuzzy $g^{\#\#}$ -open sets in fts (X,T) with $\delta_1 + \delta_2 = 1$, then either $\frac{\delta_1}{\delta_1} = 1$ or $\frac{\delta_2}{\delta_2} = 1$

either $\frac{\delta_1}{A} = 1$ or $\frac{\delta_2}{A} = 1$ **Proof:** If there exist $x, y \in A$ such that $\delta_1(x) \neq 1$ and $\delta_2(y) \neq 1$. Then $\delta_1 + \delta_2 = 1$, which implies that $\frac{\delta_1}{A} + \frac{\delta_2}{A} = 1$, where $\frac{\delta_1}{A} \neq 0$ and $\frac{\delta_2}{A} \neq 0$. Therefore δ_1 is a proper $g^{##}$ - closed and $g^{##}$ -open fuzzy set in (X,T). $\delta_2 = 1 - \delta_1$ is a fuzzy $g^{##}$ - if open set such that $\delta_2 \neq 0$ and $\delta_1 + \delta_2 = 1$. Hence A is not a fuzzy $g^{##}$ -connected space a fuzzy subspace of (X,T).

Definition 3.06: Let (X,T) be fts, two non empty fuzzy subsets δ_1 and δ_2 in fts (X,T) are said to be fuzzy $g^{\#\#}$ -separated (briefly $fg^{\#\#}$ -separated), if $cl(\delta_1) + \delta_2 \leq 1$ and $\delta_1 + cl(\delta_2) \leq 1$ where $\delta_1 \wedge cl(\delta_2) = 0$ and $cl(\delta_1) \wedge \delta_2 = 0$. That is $[\delta_1 \wedge cl(\delta_2)] \vee [cl(\delta_1) \wedge \delta_2] = 0$.

Theorem 3.07: Let $\{A_{\alpha}\}_{\alpha \in \wedge}$ be a family of fuzzy $g^{\#\#}$ -connected subset of (X,T), such that for each \square and β in \wedge and $\alpha \neq \beta$, $\mu_{A_{\alpha}}$ and $\mu_{A_{\beta}}$ are not $g^{\#\#}$ -separated from each other. Then $\bigvee_{\alpha \in \wedge} \{A_{\alpha}\}$ is a fuzzy $g^{\#\#}$ -connected subset of (X,T).

Proof: Proof Omitted

Corollary 3.08: If $\{A_{\alpha}\}_{\alpha \in \Lambda}$ is a sequence of a fuzzy $g^{\#\#}$ -connected subset of (X,T). Let $\Lambda_{\alpha \in \Lambda} \{A_{\alpha}\} \in \emptyset$. Then $\bigvee_{\alpha \in \Lambda} \{A_{\alpha}\}$ a fuzzy $g^{\#\#}$ -connected subset of (X,T).

 $\bigvee_{\alpha \in \Lambda} \{A_{\alpha}\}$ a fuzzy $g^{##}$ -connected subset of (X,T). **Corollary 3.09**: If $\{A_i: i = 1, 2, 3, 4,\}$ is a sequence of a fuzzy $g^{##}$ -connected subset of (X,T), such that μ_{A_i} and $\mu_{A_{i+1}}$ are not separated from each other for i = 1, 2, 3, 4.... Then $\bigvee_{i=1}^{\infty} \{A_i\}$ is a fuzzy $g^{##}$ -connected subset of (X,T).

Theorem 3.10: If A and B are subsets of an fts (X,T). Let $\mu_A \le \mu_B \le cl(\mu_A)$ and let A is a fuzzy $g^{##}$ -connected subset of X, then B is also an a fuzzy $g^{##}$ -connected subset of (X,T).

Proof: Proof omitted

4. FUZZY SUPER $g^{##}$ -CONNECTEDNESS IN FTS

Definition 4.01: A fuzzy set δ in a fts (X,T) is said to be fuzzy $g^{##}$ - regular open set, if $\delta = cl(int \delta)$.

Definition 4.02 : A fts (X,T) is said to be Fuzzy Super $g^{\#\#}$ -connected, if there is no proper fuzzy $g^{\#\#}$ - regular open sets δ_1 and δ_2 such that $\delta_1 + \delta_2 \leq 1$.

Theorem 4.03: If (X,T) is an fts then the following are equivalents

- 1) (X,T) is fuzzy Super $g^{##}$ -connected
- 2) Closure of every non zero fuzzy $g^{\#}$ -open set in (X,T) is 1, that is $cl(\delta) = 1$.
- 3) Interior of every fuzzy $g^{\#}$ -closed set in (X,T) is different from 1, that is zero ($\delta \neq 1$), that is $int(\delta) = 0$.
- 4) (X,T) does not have non zero fuzzy $g^{\#\#}$ -open sets δ_1 and δ_2 such that $\delta_1 + \delta_2 \le 1$.
- 5) (X,T) does not have non zero fuzzy sets δ_1 and δ_2 such that $cl(\delta_1) + \delta_2 = \delta_1 + cl(\delta_2) = 1$.
- 6) (X,T) does not have non zero fuzzy $g^{\#\#}$ -closed sets λ_1 and λ_2 such that $\lambda_1 + \lambda_2 \leq 1$.

Proof: Proof omitted

Theorem 4.04: If (X, T) and (Y, σ) are fts. Let a function $f: X \to Y$ is fuzzy continuous, then (X,T) is fuzzy super $g^{\#\#}$ -connected.It implies that Y is fuzzy super $g^{\#\#}$ -connected.

Proof: Proof omitted

Definition 4.05: A subset of an fts (X,T) is said to be fuzzy super $g^{##}$ -connected subset of (X,T), if it is fuzzy super $g^{##}$ -connected fts a a fuzzy subspace of (X,T).

Definition 4.06: Let (X,T) be a fts and If A < Y < X, then A is a fuzzy super $g^{##}$ -connected subset of (X,T), iff it is a fuzzy super $g^{##}$ -connected subset of the fuzzy subspace Y of (X,T).

Theorem 4.07: Let A be a fuzzy super $g^{\#}$ -connected subset of an fts (X,T), then there exist fuzzy $g^{\#}$ -closed sets f and g in (X,T) such that int(f) + g = f + int(g) = 1, then $\frac{f}{A} = 1$ or $\frac{g}{A} = 1$.

Proof: If $f(x_0) \neq 1$, $g(y_0) \neq 1$ and $x_0, y_0 \in A$ then $int[f(y_0)] + g[y_0] = 1$ and $f(x_0) + int[g(x_0)] = 1$ implies that $int[f(y_0) \neq 0$ and $int[g(x_0)] \neq 0$. Thus $\frac{int(f)}{A}$ and $\frac{int(g)}{A}$ are non zero fuzzy $g^{\#}$ -open sets in A such that $\frac{int(f)}{A} + \frac{int(g)}{A} \leq 1$, which contradicts the fact that A I a fuzzy super $g^{\#}$ - connected subset of (X,T).

Theorem 4.08: Let (X,T) be a fts and A < X be a fuzzy super $g^{\#}$ - connected subset of (X,T) such that μ_A is $g^{\#}$ - open set of (X,T). If δ is a fuzzy regular $g^{\#}$ - open set of (X,T), then either $\mu_A \leq \delta$ or $\mu_A \leq 1 - \delta$.

Proof: If $\delta = 0$ or $\delta = 1$, then the result holds good for $\lambda \neq 0$ and $\lambda \neq 1$. Let $f = cl(\delta)$ and $g = 1 - \delta$. Then f and g are such that int(f) + g = f + int(g) = 1. By hypothesis $\mu_A \leq f$ or $\mu_A \leq g$. So $\mu_A \leq int(f)$ or $\mu_A \leq int(g)$ as μ_A is fuzzy $g^{\#\#}$ -open . Therefore $\mu_A \leq cl[int(\delta)] = \delta$ or $\mu_A \leq int(1 - \lambda) \leq cl[int(1 - \delta)] = 1 - \delta$.

Theorem 4.09: Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a family of subsets of an fts (X,T) such that each $\mu_{A_{\alpha}}$ is fuzzy $g^{##}$ -open . If $\Lambda_{\alpha \in \Lambda} \{A_{\alpha}\} \neq \emptyset$ and each A_{α} is a fuzzy $g^{##}$ - connected subset of (X,T). Then $\bigvee_{\alpha \in \Lambda} \{A_{\alpha}\}$ is also a fuzzy super $g^{##}$ - connected subset of (X,T).

Proof: Proof omitted

Theorem 4.10: If A and B are fuzzy super $g^{\#\#}$ -connected subsets of an fts (X, T) and $\frac{int[\mu_B]}{A} \neq 0$ or $\frac{int[\mu_A]}{A} \neq 0$, $A \lor B$ is a fuzzy super $g^{\#\#}$ -connected subsets of (X,T). **Proof**: Proof omitted

Theorem 4.11: If $\{A_{\alpha}\}_{\alpha\in\Lambda}$ be a family of fuzzy super $g^{\#\#}$ -connected subset of an fts (X,T) such that $int[\Lambda_{\alpha\in\Lambda}\{A_{\alpha}\}] \neq 0$, then $\bigvee_{\alpha\in\Lambda}\{A_{\alpha}\}$ is also a fuzzy super $g^{\#\#}$ -connected subset of (X,T). **Proof**: Proof omitted

Theorem 4.12: Let ft (X,T) is fuzzy super $g^{##}$ -connected and Let C is a fuzzy super $g^{##}$ -connected subset of (X,T). Let X - C contain a set W such that $\frac{\mu_W}{X-C}$ is a fuzzy $g^{##}$ open set in the fuzzy subspace X - C of (X, T). Then $C \lor W$ is a fuzzy super $g^{##}$ -connected subset of (X, T). **Proof**: Proof omitted

Theorem 4.13: If A and B are subsets of (X,T) and $\mu_A \leq \mu_B \leq cl[\mu_A]$. A is a fuzzy super $g^{\#\#}$ -connected subset of (*X*, *T*), then B is also fuzzy super $g^{\#\#}$ -connected subset of (*X*, *T*)

Proof: If assume B is not a fuzzy super $g^{\#}$ -connected subset of (X, T), then there exist fuzzy $g^{\#}$ -open sets $\frac{\delta_1}{B} \neq 0$, $\frac{\delta_2}{B} \neq 0$ and $\frac{\delta_1}{B} + \frac{\delta_2}{B} = 1$. Let us prove that $\frac{\delta_1}{A} \neq 0$. If $\frac{\delta_1}{A} = 0$, then $\delta_1 + \mu_A \leq 1$. It implies that $\delta_1 + cl(\mu_A) \leq 1$, since $\mu_B \leq cl(\mu_A)$, therefore $\delta_1 + \mu_B \leq 1$. This implies that $\frac{\delta_1}{B} = 0$, which contradicts the fact that $\frac{\delta_1}{B} \neq 0$, therefore $\frac{\delta_1}{A} \neq 0$. Similarly let us prove that $\frac{\delta_2}{A} \neq 0$. If $\frac{\delta_2}{A} = 0$, then $\delta_2 + \mu_A \leq 1$. Now $\frac{\delta_1}{B} \neq 0$, $\frac{\delta_2}{B} \neq 0$, $\frac{\delta_1}{B} + \frac{\delta_2}{B} = 1$ and $\mu_A \leq \mu_B$ implies that $\frac{\delta_1}{A} + \frac{\delta_2}{A} = 1$. Therefore A is not super $g^{\#\#}$ -connected, which contradicts the fact.

Theorem 4.14: Let (X, T) and (Y, σ) be any two fuzzy super $g^{##}$ -connected spaces which are product related. Then $(X * Y, T * \sigma)$ is a fuzzy super $g^{##}$ -connected space. **Proof**: Proof omitted

5.FUZZY STRONGLY $g^{\#\#}$ -CONNECTEDNESS IN FTS **Definition 5.01:** A fts (*X*,*T*) is said to be Fuzzy strongly $g^{\#\#}$ -connected, if it has no non zero fuzzy $g^{\#\#}$ -closed sets δ_1 and δ_2 such that $\delta_1 + \delta_2 \leq 1$. If (*X*,*T*) is not fuzzy strongly $g^{\#\#}$ -connected, then it is said to be weakly $g^{\#\#}$ connected.

Theorem 5.02: Let fts (*X*,*T*) be fuzzy strongly $g^{\#\#}$ -connected, iff it has non zero fuzzy $g^{\#\#}$ -open sets, like α and β such that $\alpha + \beta \ge 1$.

Proof: An fts (*X*, *T*) is fuzzy $g^{\#}$ - weakly disconnected. If it has non zero fuzzy $g^{\#}$ - closed sets δ_1 and δ_2 such that $\delta_1 + \delta_2 \leq 1$. If it has non zero fuzzy $g^{\#}$ -open sets $= \delta'_1$, $\beta = \delta'_2$ such that $\alpha \neq 1, \beta \neq 1$ and $\alpha + \beta \geq 1$. By hypothesis, the fuzzy strongly $g^{\#}$ -connected is fuzzy $g^{\#}$ -connected, but the converse is not true. Therefore the fuzzy strongly $g^{\#}$ -connected and fuzzy super $g^{\#}$ -connected are unrelated.

Example 5.03: If X = [0,1] and for $0 \le x \le 1$, $\alpha(x) = 1/3$ and $T_1(X) = \{0,1,\alpha\}$ and $T_2(X) = \{0,1,\alpha'\}$, then $(X,T_1(X))$ is fuzzy $g^{##}$ -connected and fuzzy super $g^{##}$ -connected, but not fuzzy strongly $g^{##}$ -connected, but not fuzzy super $g^{##}$ -connected.

Theorem 5.04: If A < X and fts (X, T) is a fuzzy strongly $g^{##}$ -connected subset of X, iff for any fuzzy $g^{##}$ -open sets α and β in (X, T). $\mu_A \le \alpha + \beta$ implies either $\mu_A \le \alpha$ or $\mu_A \le \beta$.

Proof: If A is not a fuzzy strongly $g^{\#}$ -connected subset of (*X*, *T*), then there exist fuzzy $g^{\#}$ -closed sets δ_1 and δ_2 in (*X*, *T*), such that (a) $\frac{\delta_1}{A} \neq 0$ (b) $\frac{\delta_2}{A} \neq 0$ and (c) $\frac{\delta_1}{A} + \frac{\delta_2}{A} \leq 1$. If we put $\alpha = 1 - \delta_1$ and $\beta = 1 - \delta_2$ then $\frac{\alpha}{A} = 1 - \frac{\delta_1}{A}, \frac{\beta}{A} = 1 - \frac{\delta_2}{A}$. Therefore $\mu_A \leq \alpha + \beta$ but $\mu_A \leq \alpha$ and $\mu_A \leq \beta$. Conversely if there exist an fuzzy $g^{\#}$ -open sets α and β

such that $\mu_A \leq \alpha + \beta$, but $\mu_A \leq \alpha$ and $\mu_A \leq \beta$. Then $\frac{\alpha}{A} \neq 1$, $\frac{\beta}{A} \neq 1$ and $\frac{\alpha}{A} + \frac{\beta}{A} \geq 1$. Therefore A is not a fuzzy strongly $g^{##}$ -connected.

Theorem 5.05: If *H* is a subset of an fts (*X*,*T*), such that μ_H is a fuzzy $g^{\#\#}$ -closed in (*X*,*T*), then (*X*,*T*) is fuzzy strongly $g^{\#\#}$ -connected , which implies that *H* is a is a fuzzy strongly $g^{\#\#}$ -connected subset of *X*.

Proof: Assume *H* is not a fuzzy strongly $g^{\#}$ -connected subset of (*X*, *T*). Then there exist fuzzy $g^{\#}$ -closed sets δ_1 and δ_2 in (*X*, *T*), such that (a) $\frac{\delta_1}{H} \neq 0$ (b) $\frac{\delta_2}{H} \neq 0$ and (c) $\frac{\delta_1}{H} + \frac{\delta_2}{H} \leq$, here (c) implies $(\delta_1 \land \mu_H) + (\delta_2 \land \mu_H) \leq 1$, where $\frac{\delta_1}{H} \neq 0$ and $\frac{\delta_2}{H} \neq 0$. So $\delta_1 \land \mu_H \neq 0$ and $\delta_2 \land \mu_H \neq 0$. Therefore (*X*, *T*) is not fuzzy strongly $g^{\#}$ -connected and which contradicts the fact.

Theorem 5.06: Let (X, T) be fts and the function $f: X \to Y$ is continuous, then (X, T) is fuzzy strongly $g^{\#\#}$ -connected. Which implies that *Y* is fuzzy strongly $g^{\#\#}$ -connected.

Proof: By the definition of $g^{\#}$ - continuous mapping, A function $f: X \to Y$ is $fg^{\#}$ -continuous iff the inverse image of every closed fuzzy set in *Y* is $g^{\#}$ -closed fuzzy set in *X*. Also by the definition of fuzzy strongly $g^{\#}$ -continuous function, A function $f: X \to Y$ is fuzzy strongly $g^{\#}$ -continuous, iff the inverse image of every $g^{\#}$ -closed fuzzy set in *X*. Therefore *f* is fuzzy strongly $g^{\#}$ -connected in (Y, σ) and also in (X, T).

E-ISSN: 2349 5359; P-ISSN: 2454-9967

Theorem 5.07: A finite product of fuzzy strongly $g^{##}$ - connected space is fuzzy strongly $g^{##}$ - connected. **Proof**: Proof omitted

Observation 5.08: An finite product of fuzzy strongly $g^{\#\#}$ - connected space need not be fuzzy strongly $g^{\#\#}$ - connected.

Example 5.09: Let $X_n = [0,1]$, where n = 1,2,3... Let $\alpha_n(x) = \frac{1}{2} \left\{ \frac{n}{(n+1)} \right\}$, if $x \in X$. And $T(X_n) = \{0,1,\alpha_n\}$, where n = 1,2,3... Then each (X,T) is . But the fuzzy $g^{\#\#}$ - connected space $X = \bigwedge_{n=1}^{\infty} X_n$ is not as T(X) contains a member $\bigvee_{n=1}^{\infty} P_n^{-1}(\alpha_n) \neq 1$, such that $\{\bigvee_{n=1}^{\infty} P_n^{-1}(\alpha_n)\}(x) = \frac{1}{2}$, where $x \in X$.

6. CONCLUSION

In this paper, we studied the new results on the spaces and investigated the extension of connected spaces like, $g^{\#\#}$ -connected, $g^{\#\#}$ -super connected, $g^{\#\#}$ - strongly connected. We observed few results like, the product of $fg^{\#\#}$ -connected spaces need not be $fg^{\#\#}$ -connected spaces. Fuzzy $g^{\#\#}$ -connected and $fg^{\#\#}$ -super connectedness ate not related to each other. An infinite product of $fg^{\#\#}$ -strongly connected spaces need not be $fg^{\#\#}$ - strongly connected, where as it is possible in general topology. This work further lead to the study of disconnectedness of fuzzy $g^{\#\#}$ -closed sets.

ACKNOWLEDGEMENT

The author would be thankful to the reviewers for their valuable suggestions regarding to improve of this paper.

REFERENCES

- Zadeh, L. A, 1965, Fuzzy sets, Information and control, 8, 338-353.
- [2] Levine, N., 1965, Strongly connected sets in a topology, Amer. Math. Monthly 72, 1099-1101.
- [3] Chang, C.L., 1968, Fuzzy topological spaces, J Math Anal Appl 24,182-190.
- [4] Hutton, B., 1975, Normality in Fuzzy topological Spaces, J. Math. Anal. Appl. 50, 74-79.
- [5] Pu, P.M. and Y.M. Liu, 1980, Fuzzy topology I Neighborhood structure of a fuzzy point and Moore-Smooth convergence, J. Math. Anal. Appl, 76, 571-599.

- [6] Lowen, R., 1981, Connectedness in fuzzy topological Spaces, Rocky Mt. J. Math. 11, 427-433
- [7] Zheng, C.Y., 1984, Fuzzy path and fuzzy connectedness, Fuzzy sets and Systems. 14, 273-280.
- [8] Fatteh, U.V., and D S. Bassan, 1985, Fuzzy connectedness and its stronger forms, J. Math. Anal, Appl. 111, 449-464.
- [9] Ajmal,N., J. K. Kohli, 1994, Connectedness and local connectedness in fuzzy topological spaces, Fuzzy sets and Systems, 61, 231-237.
- [11] Ead Hassan, Q., 2007, On Some kinds of Fuzzy Connected Spaces, Applications of Mathematics, 4, 353-361.
- [12] Kiran.G.Potadar and Sadanand.N.Patil, 2016, On Fuzzy g^{##} -Continuous maps and fuzzy g^{##} -Homomorphism mappings in Fuzzy topological spaces, Int. Journal of sci., Engg & Mgmt, 1, 19-27.
- [13] Kiran.G.Potadar and Sadanand.N.Patil, 2016, New Stronger Forms of Fuzzy Continuous mapping in Fuzzy Topological Spaces, Journal of Adv in Sci. & Tech, 12, Dec 34-39.

All © 2019 are reserved by International Journal of Advanced Science and Engineering. This Journal is licensed under a Creative Commons Attribution-Non Commercial-ShareAlike 3.0 Unported License.