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1.INTRODUCTION
 Infrared (IR) spectroscopy, an analytical 
technique that takes advantage of the vibrational 
transitions of a molecule, has been of great 
significance to scientific researchers in many fields 
such as protein characterization, nanoscale 
semiconductor analysis and space exploration [1]. 
Infrared (IR) spectroscopy is one of the most 
common and widely used spectroscopic 
techniques employed mainly by inorganic and 
organic chemists due to its usefulness in 
determining structures of compounds and 
identifying them [2]. Chemical compounds have 
different chemical properties due to the presence 
of different functional groups [3]. 

The atoms in a molecule do not remain in fixed 
relative position but vibrate about some mean 
position. The internuclear distance changes when 
the nuclei of these molecules vibrate relative to 
each other. Thus, these molecules possess an 
oscillating dipole, which according to classical 
electrodynamics, emits radiations of frequency 
that fall in near infrared region [4]. Heteronuclear 
diatomic molecules such as HCl, HI, CO, CN, …. etc. 
have intrinsic electric dipole moment and are 
capable of interacting with electromagnetic 
radiation. Hence, these molecules exhibit 
vibrational spectra. Homonuclear diatomic 
molecules do not have dipole moment and hence 
do not give vibrational spectra [5, 6]. 

To develop a description of the vibrational states, 
we will consider the diatomic molecule to be a 
Harmonic oscillator, i.e. atoms execute simple 
harmonic motion about their mean position and 
the restoring force applied on the atoms is directly 
proportional to displacement. A theoretical 
analysis of the quantized vibrational energy levels 
and the vibrational transitions exhibited by the 
polar heteronuclear molecules is presented. The 
harmonic oscillator model is a great 
approximation of a molecular vibration, but has 
key limitations:1. Due to equal spacing of energy, 
all transitions occur at the same frequency (i.e. 
single line spectrum). However, experimentally 
many other lines (called overtones) are often 
observed 2. The harmonic oscillator does not 
predict bond dissociation; you cannot break it no 
matter how much energy is introduced. The 
discrepancies of theoretical and experimental data 
have been resolved by considering the diatomic 
molecule as an anharmonic oscillator. 
 
2. THEORY OF PURE VIBRATIONAL SPECTRA 

Now, we will discuss the theory of vibrational 
spectra of diatomic molecules. There are two 
models to discuss the pure vibrational motion of 
heteronuclear diatomic molecule. 
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i. Harmonic oscillator model 
ii. Anharmonic oscillator model 

2.1 DIATOMIC MOLECULE AS A HARMONIC 
OSCILLATOR 

Consider a diatomic molecule consisting of two 
atoms 𝐴and 𝐵 and separated by equilibrium 
distance 𝑟𝑒𝑞..Fig. 1 shows how the potential energy 

of diatomic molecule varies with the internuclear 
distance 𝑟. The minimum of this curve 

corresponds to the normal configuration of the 
molecule. The zero of the curves is found at the 
value 𝑟 = 𝑟𝑒𝑞.. Any energy in excess of this, for 

example, 𝜀1 arises because of extension or 
compression of the bond [1]. If one of the atoms 
(suppose 𝐴) is considered to be stationary on the 
𝑟 = 0 axis, the other will oscillate between 𝐵’ and 
𝐵’’.If the energy is increased to 𝜀2, the oscillation 
will become more vigorous [1]. 

 

 
Fig 1. Parabolic curve of energy plotted against the expansion and compression of harmonic 

oscillator obeying Hooke’s law 
 
 Suppose the bond is distorted from its 
equilibrium length 𝑟𝑒 to new length 𝑟. The bond, 
like spring, obeys Hooke’s law. Then 
 

𝑓 = −𝑘(𝑟 − 𝑟𝑒𝑞.) … (1) 

 
Here, 𝑓 is the restoring force, 𝑘 is the force 
constant, and 𝑟 the interaction distance [3]. 
 In this case, the potential energy curve is 
parabolic and has the form 
 

𝑉 =
1

2
𝑘(𝑟 − 𝑟𝑒𝑞.)

2
… (2) 

 
 This model of vibrating diatomic molecule is 
called “Simple Harmonic Oscillator” model [1, 2]. 
Fig. 1 shows the parabolic curve of energy plotted 
against the expansion and compression of 
harmonic oscillator. 
Classically it is easy to show that the oscillation 
frequency is  

𝜈𝑜𝑠𝑐 =
1

2𝜋
√

𝑘

𝜇
… (3) 

where, 𝜇 is the reduced mass of the diatomic 
molecule. 
 The energy of Harmonic oscillator is given by 
[after solving Schrodinger equation] 
 

𝐸𝑣 = ℎ𝜈𝑜𝑠𝑐 (𝑣 +
1

2
) … (4) 

 
where, 𝑣 is called the vibrational quantum number 
which can take values: 𝑣 = 0, 1, 2, 3,………Equation 
(4) gives the allowed energies for the harmonic 
oscillator. 
 A special feature of the quantum mechanical 
oscillator is the existence of zero-point energy, 
1

2
ℎ𝜈𝑜𝑠𝑐 . 

 Let us now investigate the expected spectrum of 
such an oscillator. The vibrational terms (energies 
in wavenumber units 𝑚−1 or 𝑐𝑚−1) are  
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𝐺(𝑣) =
𝐸𝑣

ℎ𝑐
=

𝜈𝑜𝑠𝑐

𝑐
(𝑣 +

1

2
) … (5) 

 

where, 
𝜈𝑜𝑠𝑐

𝑐
 is the classical frequency in wave 

number unit and is called as vibrational constant 
denoted by �̅�𝑜𝑠𝑐. 
Thus,  

𝐺(𝑣) = �̅�𝑜𝑠𝑐 (𝑣 +
1

2
) … (6) 

 
Substituting 𝑣 = 0, 1, 2, 3,………, we get 
 

𝐺(0) =
1

2
�̅�𝑜𝑠𝑐  

𝐺(1) =
3

2
�̅�𝑜𝑠𝑐  

𝐺(2) =
5

2
�̅�𝑜𝑠𝑐  

𝐺(3) =
7

2
�̅�𝑜𝑠𝑐  

………………. 
 
Thus, we have a series of equidistant discrete 
vibrational levels, the common spacing being 
�̅�𝑜𝑠𝑐[1]. 
When a transition takes place between a lower 

level 𝑣 ′ and an upper level 𝑣 ′′, the wave number of 
the absorbed electromagnetic radiation is  
 

�̅�𝑣′→𝑣′′ = 𝐺(𝑣 ′′) − 𝐺(𝑣 ′) 

�̅�𝑣′→𝑣′′ = �̅�𝑜𝑠𝑐 (𝑣 ′′ +
1

2
) − �̅�𝑜𝑠𝑐 (𝑣 ′ +

1

2
) … (7) 

Now, for a harmonically oscillating molecule of 
dipole moment𝑀, the matrix element is found to 
be non-vanishing only when  
 

𝑑𝑀

𝑑𝑥
≠ 0 and∆𝑣 = ±1       … (8) 

 

 
 

Fig 2. The allowed vibrational energy levels and transitions between them for a diatomic molecule 
undergoing simple harmonic oscillation 

 
 That is, vibrational transition can only occur 
when the molecule has a permanent dipole 
moment 𝑀 which changes with distance 𝑥. 
Further, the selection rule ∆𝑣 = ±1 gives [1] 
 

𝑣 ′′ = 𝑣 ′ + 1      (∵ 𝑣 ′′ > 𝑣 ′) … (9) 

 
 The spacing between the vibrational energy 
levels is considerably larger than the spacing 

between the rotational energy levels of a molecule, 
in fact larger than 𝑘𝐵𝑇 at room temperature. 
Hence, most of the molecules in a sample exists in 
the 𝑣 = 0 state, with only their zero-point energies 
(except in case of very heavy molecules which 
have smaller vibrational spacings  �̅�𝑜𝑠𝑐). 
 Thus, the main vibrational transition in 

absorption is 𝑣 ′ = 0 → 𝑣 ′′ = 1. 
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The absorbed wave number corresponding to the 
transition (𝑣 ′ = 0 to 𝑣 ′′ = 1) is 

�̅�𝑣′→𝑣′′ = �̅�𝑜𝑠𝑐 (𝑣 ′′ +
1

2
) − �̅�𝑜𝑠𝑐 (𝑣 ′ +

1

2
) 

�̅�0→1 = �̅�𝑜𝑠𝑐 (1 +
1

2
) − �̅�𝑜𝑠𝑐 (0 +

1

2
) 

�̅�0→1 =
3

2
�̅�𝑜𝑠𝑐 −

1

2
�̅�𝑜𝑠𝑐  

�̅�0→1 = �̅�𝑜𝑠𝑐 … (10) 
 
 Thus, the vibrational spectrum is expected to 
consist of a single absorption band at �̅�𝑜𝑠𝑐 . Fig. 2 
shows the energy level diagram with transitions in 
a diatomic molecule undergoing harmonic 
oscillations. The observation of a very intense 
band in the infrared spectrum thus leads to the 
conclusion that it is a vibrational spectrum, the 
nuclei carrying out harmonic vibrations along the 
internuclear axis [1].  
 

However, the occurrence of weak overtone 
bands at wave numbers nearly two, three times 
the wave numbers of the main band is still to be 
explained, and is connected with the deviations 
from the oscillations being “harmonic” [1]. 
 
2.2  THE MOLECULE AS ANHARMONIC 
OSCILLATOR 
 

A comparison of an observed near infrared 
spectrum with that expected from a diatomic 
molecule treated as harmonic oscillator shows an 
important disagreement. The harmonic oscillator 
would give a single band at wave number �̅�𝑜𝑠𝑐 , 
which is the classical frequency of vibration of the 
molecule. The actual infrared spectrum is, 
however, found to consist of an intense 
(fundamental) band at �̅�𝑜𝑠𝑐 , plus a number of 
weak bands (overtones) at wave numbers slightly 
lesser and lesser than 2�̅�𝑜𝑠𝑐 , 3�̅�𝑜𝑠𝑐 , ……….The 
observation indicates that the selection rule ∆𝑣 =
±1 is not strictly obeyed [2, 3], and transitions 
corresponding to ∆𝑣 > 1 do take place. This, in 
turn, is attributed to the fact that the dipole 
moment of the molecule is not strictly linear with 
respect to the internuclear displacement 𝑥 (= 𝑟 −
𝑟𝑒𝑞.). This is expressed as “electrical 

anharmonicity” of the molecule [7–9]. The 
observation that the overtones appear not exactly 
at 2�̅�𝑜𝑠𝑐 , 3�̅�𝑜𝑠𝑐 , ………but at lesser and lesser 
values indicates that the vibrational energy levels 
are not exactly equally spaced, but converge 
slowly. This is attributed to the fact that for an 
actual molecule the potential energy curve is not 
strictly parabolic (except near the minimum). That 
is, the potential energy function 𝑉(𝑟) is not 
harmonic and we must include terms higher than 
quadratic in the Taylor’s series expansion of 𝑉(𝑟). 

This is expressed as “mechanical anharmonicity” 
of the molecule [2, 8]. 

A purely empirical expression which fits the 
potential energy curve (observed) to a good 
approximation was derived by P.M. Morse, and is 
called the Morse equation [1, 7]: 

𝑉(𝑟) = 𝐷𝑒[1 − 𝑒{−𝑎(𝑟−𝑟𝑒𝑞.)}]
2

… (11) 

where, 𝑎 is a constant for particular molecule and 
𝐷𝑒 is the depth of the potential energy curve. 
To a first approximation, let us include the square 
and cubic terms in 𝑉(𝑟), so that 
 

𝑉(𝑟) = 𝑓(𝑟 − 𝑟𝑒𝑞.)
2

− 𝑔(𝑟 − 𝑟𝑒𝑞.)
3

… (12) 

where 𝑔 ≪ 𝑓. 
 
Substituting the value of 𝑉(𝑟)from equation (13) 
in the Schrodinger equation and solving by 
perturbation method, we get the energy eigen 
values of the anharmonic oscillator as 
 

𝐸𝑣 = ℎ𝑐�̅�𝑒 (𝑣 +
1

2
) − ℎ𝑐�̅�𝑒𝑥𝑒 (𝑣 +

1

2
)

2

+  … … ….      … (13) 
 
The corresponding term values are given by 

𝐺(𝑣) =
𝐸𝑣

ℎ𝑐
 

𝐺(𝑣) = �̅�𝑒 (𝑣 +
1

2
) − �̅�𝑒𝑥𝑒 (𝑣 +

1

2
)

2

… (14) 

 
The quantity �̅�𝑒  is the wavenumber spacing of 

energy levels that would occur if potential energy 
curve were a parabola, �̅�𝑒𝑥𝑒 is the “anharmonicity 
constant” which is much smaller than �̅�𝑒  and is 
always positive [4, 6]. 
 The equation (14) shows that the energy levels 
of anharmonic oscillator are not equidistant, but 
their separation decreases slowly with 
increasing 𝑣. Fig. 3 shows the energy level diagram 
of a diatomic molecule undergoing anharmonic 
oscillations. 
 
Substituting  𝑣 = 0, 1, 2, 3,………, we get 

𝐺(0) =
1

2
�̅�𝑒 −

1

4
�̅�𝑒𝑥𝑒 

𝐺(1) =
3

2
�̅�𝑒 −

9

4
�̅�𝑒𝑥𝑒 

𝐺(2) =
5

2
�̅�𝑒 −

25

4
�̅�𝑒𝑥𝑒 

𝐺(3) =
7

2
�̅�𝑒 −

49

4
�̅�𝑒𝑥𝑒 

…………………………… 
 
When a transition takes place between a lower 

level 𝑣 ′ and an upper level 𝑣 ′′ (due to absorption), 
the wave number of the emitted radiation is  
 

�̅�𝑣′→𝑣′′ = 𝐺(𝑣 ′′) − 𝐺(𝑣 ′) 
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�̅�𝑣′→𝑣′′ = [�̅�𝑒 (𝑣′′ +
1

2
) − �̅�𝑒𝑥𝑒 (𝑣′′ +

1

2
)

2

]

− [�̅�𝑒 (𝑣′ +
1

2
) − �̅�𝑒𝑥𝑒 (𝑣′ +

1

2
)

2

] 

 
�̅�𝑣′→𝑣′′ = �̅�𝑒(𝑣 ′′ − 𝑣 ′) − �̅�𝑒𝑥𝑒(𝑣 ′′ − 𝑣 ′)(𝑣 ′′ + 𝑣 ′ + 1) 

------ (15) 

Thus, as 𝑣 increases, the separation between 
successive bands (or levels) decreases very nearly 
linearly, in agreement with observation [2, 5]. 
 

Let us now investigate the infrared spectrum for 
the anharmonic oscillator. Since the eigen function 

of anharmonic oscillator are very similar to those 
of the harmonic oscillator, the selection rule ∆𝑣 =
±1 still holds giving the most intense transitions. 
In addition, for the anharmonic oscillator, 
transitions corresponding to ∆𝑣 = ±2, ±3, 
…..…also appear, even though with rapidly 
decreasing intensity. The possible transitions in 
absorption when all the molecules are initially in 
the 𝑣 = 0 state are shown in Fig. 4. This explains 
the appearance of observed weak overtone bands 
together with intense fundamental band [1, 10]. 
It is also seen that transitions with  ∆𝑣 = 2, 3, 
4,..….. have approximately, but not exactly, two, 
three, four, ……. times the wave number of the 
transition ∆𝑣 = 1, in agreement with observation. 

 

 
 

Fig 3. The Morse curve: the vibrational energy levels of diatomic molecule undergoing anharmonic 
expansions and compressions 

 
 

1. Fundamental Band: The transition from 𝑣 ′ = 0 

to 𝑣 ′′ = 1 gives most intense fundamental band 
with wavenumber [4, 5] 
 �̅�0 → 1 = �̅�𝑒(1 − 0) − �̅�𝑒𝑥𝑒(1 − 0)(1 + 0 + 1) 

 �̅�0 → 1 = �̅�𝑒 − 2�̅�𝑒𝑥𝑒 = �̅�𝑒(1 − 2𝑥𝑒) … (16) 

2. First Overtone Band: The transition from 𝑣 ′ =

0 to 𝑣 ′′ = 2 gives weak band (with lesser intensity 
than fundamental band) with wavenumber [1, 5] 
 �̅�0 → 2 = �̅�𝑒(2 − 0) − �̅�𝑒𝑥𝑒(2 − 0)(2 + 0 + 1) 

 �̅�0 → 2 = 2�̅�𝑒 − 6�̅�𝑒𝑥𝑒 = 2�̅�𝑒(1 − 3𝑥𝑒) … (17) 
3. Second Overtone Band: The transition from 

𝑣 ′ = 0 to 𝑣 ′′ = 3 gives much weaker band with 
wavenumber 

 �̅�0 → 3 = �̅�𝑒(3 − 0) − �̅�𝑒𝑥𝑒(3 − 0)(3 + 0 + 1) 

 �̅�0 → 3 = 3�̅�𝑒 − 12�̅�𝑒𝑥𝑒 = 3�̅�𝑒(1 − 4𝑥𝑒) … (18) 

4. Third Overtone Band:  

The transition from 𝑣 ′ = 0 to 𝑣 ′′ = 4 gives 
muchweaker band (negligible intensity) with 
wavenumber 
 �̅�0 → 4 = �̅�𝑒(4 − 0) − �̅�𝑒𝑥𝑒(4 − 0)(4 + 0 + 1) 

 �̅�0 → 4 = 4�̅�𝑒 − 20�̅�𝑒𝑥𝑒 = 4�̅�𝑒(1 − 5𝑥𝑒) … (19) 

Thus, the overtone bands are observed at wave 
numbers slightly lesser and lesser than 2�̅�𝑒, 3�̅�𝑒 , 
4�̅�𝑒 , ………(See Fig. 4). 
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Fig 4. The allowed vibrational energy levels and some transitions between them for a diatomic 
molecule undergoing anharmonic oscillations 

 
3. ISOTOPE EFFECT ON VIBRATIONAL ENERGY 
LEVELS 

Different isotopic molecules have different 
vibrational levels, and hence different vibrational 
frequencies. From equation (3), the classical 
frequency of a molecule (assumed as harmonic 
oscillator) is given by [1] 

𝜈𝑜𝑠𝑐 =
1

2𝜋
√

𝑘

𝜇
 

The force constant 𝑘 is determined by the 
electronic motion only and is therefore exactly the 
same for different isotopic molecules. The reduced 
mass is, however, different for different isotopes. 
If 𝜔𝑖  is vibrational constant for the heavier 
isotope, we have [1] 
 

�̅�𝑖

�̅�
=

𝜈𝑖
𝑜𝑠𝑐

𝜈𝑜𝑠𝑐

= √
𝜇

𝜇𝑖
… (20) 

4. THERMAL DISTRIBUTION OF VIBRATIONAL 
ENERGY LEVELS (POPULATION RATIO) 

 According to Maxwell-Boltzmann distribution 
law [1], the number of molecules in the 𝑣th state, 
𝑁𝑣, relative to that in the lowest state, 𝑁0 is given 
by 

𝑁𝑣 = 𝑁0𝑒−(𝐸𝑣−𝐸0)/𝑘𝐵𝑇 

where, 𝐸𝑣 = ℎ𝑐�̅�𝑒 (𝑣 +
1

2
) − ℎ𝑐�̅�𝑒𝑥𝑒 (𝑣 +

1

2
)

2

≈

ℎ𝑐�̅�𝑒 (𝑣 +
1

2
) 

(ignoring the second term with anharmonicity) 

𝑁𝑣

𝑁0

= 𝑒−(𝐸𝑣−𝐸0)/𝑘𝐵𝑇 … (21) 

Now, consider the spacing between the 
vibrational energy level as 1000 𝑐𝑚−1, i.e.�̅�𝑒 ≈
�̅�𝑜𝑠𝑐 = 1000 𝑐𝑚−1. Let us consider the population 
of ground state is 𝑁0. 

Now, we will calculate and compare the 
population of first excited state, second excited 
state, third excited state relative to ground state. 

(i) Ratio of populations of first excited state 
and ground state: 

𝑁1

𝑁0

= 𝑒
−

(𝐸1−𝐸0)

𝑘𝐵𝑇 = 𝑒
−(

ℎ𝑐�̅�𝑜𝑠𝑐
𝑘𝐵𝑇

)
 

𝑁1

𝑁0

= exp (−
6.626 × 10−34 × 3 × 1010 × 1000

1.38 × 10−23 × 300
)

= exp(−4.78) = 0.00822
≈ 0.01 or 1 % 

𝑁1 ≈ 1 % of𝑁0 

(ii) Ratio of populations of second excited state 
and ground state: 
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𝑁2

𝑁0
= 𝑒

−
(𝐸2−𝐸0)

𝑘𝐵𝑇 = 𝑒
−(

2ℎ𝑐�̅�𝑜𝑠𝑐
𝑘𝐵𝑇

)
 

𝑁2

𝑁0
= exp (−

2 × 6.626 × 10−34 × 3 × 1010 × 1000

1.38 × 10−23 × 300
) 

= 0.0000675 ≈ 0.00007 or 0.007 % 

𝑁2 ≈ 0.007 % of𝑁0 

(iii) Ratio of populations of third excited state 
and ground state: 

𝑁3

𝑁0

= 𝑒
−

(𝐸3−𝐸0)

𝑘𝐵𝑇 = 𝑒
−(

3ℎ𝑐�̅�𝑜𝑠𝑐
𝑘𝐵𝑇

)
 

𝑁3

𝑁0
= 𝑒𝑥𝑝 (−

3 × 6.626 × 10−34 × 3 × 1010 × 1000

1.38 × 10−23 × 300
)

= 0.000000555
≈ 0.0000006 or 0.00006 % 

𝑁3 ≈ 0.00006 % of 𝑁0 

     From above calculations, it is clear that the 
population of the first excited state(𝑣 = 1)is 
approximately 1 % of the population of ground 
state(𝑣 = 0), the population of the second excited 
state (𝑣 = 2) is approximately 0.007 % of the 
population of ground state(𝑣 = 0) and the 
population of third excited state (𝑣 = 3) is 
0.00006 % of the population of ground 
state(𝑣 = 0). Thus, at low temperature we may 
ignore all transitions originating from vibrational 
quantum numbers 𝑣 ≥ 1 and restrict ourselves to 
the transitions originating at 𝑣 = 0 only [1]. 

Effect of increasing temperature from 𝑻 =
𝟑𝟎𝟎𝑲 to 𝟔𝟎𝟎𝑲  (at �̅�𝒐𝒔𝒄 = 𝟏𝟎𝟎𝟎𝒄𝒎−𝟏) 

 Ratio of population of molecules in the first 
excited state to the ground state is  

𝑁1

𝑁0

= 𝑒
−

(𝐸1−𝐸0)

𝑘𝐵𝑇 = 𝑒
−(

ℎ𝑐�̅�𝑜𝑠𝑐
𝑘𝐵𝑇

)
 

𝑁1

𝑁0

= 𝑒𝑥𝑝 (−
6.626 × 10−34 × 3 × 1010 × 1000

1.38 × 10−23 × 600
)

= 𝑒𝑥𝑝(−2.40072464) = 0.0907 

𝑁1 ≈ 9.07 % of𝑁0 

Here, the population of the first excited 
state(𝑣 = 1)  is approximately9 %of the 
population of ground state(𝑣 = 0). Thus, at 𝑇 =

600 𝐾, we may consider transitions originating 
from𝑣 = 1. The transitions starting from 𝑣 ≥ 1 are 
known as hot bands. 

Effect of decreasing vibrational frequency from 
𝟏𝟎𝟎𝟎𝒄𝒎−𝟏 to 𝟓𝟎𝟎𝒄𝒎−𝟏 (𝑻 = 𝟑𝟎𝟎𝑲): 

𝑁1

𝑁0

= 𝑒
−

(𝐸1−𝐸0)

𝑘𝐵𝑇 = 𝑒
−(

ℎ𝑐�̅�𝑜𝑠𝑐
𝑘𝐵𝑇

)
 

𝑁1

𝑁0

= exp (−
6.6 × 10−34 × 3 × 1010 × 500

1.38 × 10−23 × 300
)

= exp(−2.40072464) = 0.0907 

𝑁1 ≈ 9.07 % of 𝑁0 

 In other words, the population of the 𝑣 = 1 state 
is nearly 9 percent of the ground state population. 
Thus, we can say that a similar increase in the 
excited state population would arise if the 
vibrational frequency is lowered from 1000 𝑐𝑚−1 
to 500 𝑐𝑚−1. Thus, at 𝑇 = 300 𝐾, we may consider 
transitions originating at 𝑣 = 1 if the vibrational 
frequency is lowered.  

Hot Bands: The transitions from first excited state 
(𝑣 = 1) to the higher states (𝑣 > 1) are not 
observed unless the temperature of the molecular 
sample is high or if the vibration has a particularly 
low frequency. This is due to the fact that the 
population in 𝑣 = 1state is negligible at lower 
temperature and it becomes appreciable only at 
higher temperatures [1]. 
 
The transition 𝑣′ = 1 ⟶ 𝑣′′ = 2 appears at wave 
number 
�̅�𝑣′→𝑣′′ = �̅�𝑒(𝑣 ′′ − 𝑣′) − �̅�𝑒𝑥𝑒(𝑣′′ − 𝑣′)(𝑣 ′′ + 𝑣 ′ + 1) 

�̅�1→2 = �̅�𝑒(2 − 1) − �̅�𝑒𝑥𝑒(2 − 1)(2 + 1 + 1) 

�̅�1→2 = �̅�𝑒 − 4�̅�𝑒𝑥𝑒 

�̅�1→2 = �̅�𝑒(1 − 4𝑥𝑒) … (22) 

 The transition 𝑣′ = 1 ⟶ 𝑣′′ = 2 is very weak 
and it will be observed closer to and at slightly 
lower wave numbers than the fundamental band 
[1]. These transitions are generallyknown as ‘hot 
bands’, since high temperature is the one 
condition for their existence. Their nature may be 
confirmed by raising the temperature of the 
sample when a true hot band will increase in 
intensity. 

 
5. DISSOCIATION ENERGY OF DIATOMIC 
MOLECULE 
 The energy of vibrational energy level may be 
written as: 

𝐸𝑣 = ℎ𝑐�̅�𝑒 (𝑣 +
1

2
) − ℎ𝑐�̅�𝑒𝑥𝑒 (𝑣 +

1

2
)

2

… (23) 

And therefore, separation between neighbouring 
levels, ∆𝐸, is normally 

∆𝐸 = 𝐸𝑣+1 − 𝐸𝑣 
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∆𝐸 = [ℎ𝑐�̅�𝑒 (𝑣 + 1 +
1

2
) − ℎ𝑐�̅�𝑒𝑥𝑒 (𝑣 + 1 +

1

2
)

2

] −

[ℎ𝑐�̅�𝑒 (𝑣 +
1

2
) − ℎ𝑐�̅�𝑒𝑥𝑒 (𝑣 +

1

2
)

2

] 

∆𝐸 = ℎ𝑐�̅�𝑒 − 2ℎ𝑐�̅�𝑒𝑥𝑒(𝑣 + 1) 

∆𝐸 = ℎ𝑐�̅�𝑒[1 − 2𝑥𝑒(𝑣 + 1)] 
 

This separation obviously decreases with 
increasing 𝑣 and the dissociation limit is reached 
when ∆𝐸 → 0. Thus, the maximum value of 𝑣 is 
given by𝑣𝑚𝑎𝑥, where 

∆𝐸 = ℎ𝑐�̅�𝑒[1 − 2𝑥𝑒(𝑣𝑚𝑎𝑥 + 1)] = 0 

[1 − 2𝑥𝑒(𝑣𝑚𝑎𝑥 + 1)] = 0 

𝑣𝑚𝑎𝑥 =
1

2𝑥𝑒

− 1     … (24) 

If we recall that the anharmonicity constant,  

𝑥𝑒 ≈ 10−3; hence 𝑣𝑚𝑎𝑥 =
1

0.001
− 1 = 500 − 1 =

499 ≈ 500. 

Substituting value of 𝑣𝑚𝑎𝑥 in equation (1), we get 

𝐸𝑚𝑎𝑥 = 𝐷𝑒 = ℎ𝑐�̅�𝑒 (𝑣𝑚𝑎𝑥 +
1

2
) − ℎ𝑐�̅�𝑒𝑥𝑒 (𝑣𝑚𝑎𝑥 +

1

2
)

2

 

𝐸𝑚𝑎𝑥 = ℎ𝑐�̅�𝑒 (
1

2𝑥𝑒
− 1 +

1

2
) − ℎ𝑐�̅�𝑒𝑥𝑒 (

1

2𝑥𝑒
− 1 +

1

2
)

2

 

𝐸𝑚𝑎𝑥 = ℎ𝑐�̅�𝑒 (
1

2𝑥𝑒

−
1

2
) − ℎ𝑐�̅�𝑒𝑥𝑒 (

1

2𝑥𝑒

−
1

2
)

2

 

𝐸𝑚𝑎𝑥 = ℎ𝑐�̅�𝑒 [(
1

2𝑥𝑒

−
1

2
) − 𝑥𝑒 (

1

2𝑥𝑒

−
1

2
)

2

] 

𝐸𝑚𝑎𝑥 = ℎ𝑐�̅�𝑒 [
1

4𝑥𝑒

−
𝑥𝑒

4
] ≈ ℎ𝑐 (

�̅�𝑒

4𝑥𝑒

) 

This will represent the dissociation energy of the 
molecule with respect to the bottom of the 
potential energy diagram. The true dissociation 
energy will be given by 

𝐷0 = 𝐷𝑒 − 𝐸𝑣 = 0 = ℎ𝑐�̅�𝑒 [
1

4𝑥𝑒

−
𝑥𝑒

4
]

− ℎ𝑐 [
1

2
�̅�𝑒 −

1

4
�̅�𝑒𝑥𝑒] 

𝐷0 = ℎ𝑐�̅�𝑒 [
1

4𝑥𝑒

−
𝑥𝑒

4
−

1

2
+

𝑥𝑒

4
] 

𝐷0 = ℎ𝑐�̅�𝑒 [
1

4𝑥𝑒

−
1

2
] … (25) 

For HCl molecule, �̅�𝑒 = 2886 𝑐𝑚−1 and 
dissociation energy (for 𝑥𝑒 = 0.001) 

𝐷0 = ℎ𝑐�̅�𝑒 [
1

4𝑥𝑒

−
1

2
]

= (6.626 × 10−34) × (3 × 108)
× (2886 × 100)

× (
1

4 × 0.001
−

1

2
) 

= 1431329304.6 × 10−26𝐽𝑜𝑢𝑙𝑒 

= 0.89458 𝑒𝑉 ≈ 0.9 𝑒𝑉 

Thus, the dissociation energy of HCl molecule is 
approximately 0.9 𝑒𝑉. 

 
TABLE 1: The population ratio of first, second, third, fourth and fifth excited state with the ground 

state at 300 K, 600 K and 900 K. 
 

𝐄𝐧𝐞𝐫𝐠𝐲 
𝐋𝐞𝐯𝐞𝐥 /𝐬𝐭𝐚𝐭𝐞 

𝑵𝒗/𝑵𝟎 
(𝐚𝐭 𝑻 = 𝟑𝟎𝟎𝑲) 

𝑵𝒗/𝑵𝟎 
(𝐚𝐭 𝑻 = 𝟔𝟎𝟎𝑲) 

𝑵𝒗/𝑵𝟎 
(𝐚𝐭 𝑻 = 𝟗𝟎𝟎𝑲) 

First Excited State 0.00822 0.0907 0.202 

Second Excited State 0.0000675 0.00822 0.0407 

Third Excited State 0.000000555 0.000745 0.00822 

Fourth Excited State 0.00000000456 0.0000675 0.00166 

Fifth Excited State 0.0000000000375 0.00000612 0.000335 
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6. CONCLUSIONS 

This article explains the infrared spectra of 
heteronuclear diatomic molecules such as HCl, 
HBr, HI, CO, … etc. In order to explain the 
vibrational spectra, diatomic molecules are 
treated as harmonic oscillator and anharmonic 
oscillator. In the harmonic oscillator model 
infrared spectra are very simple; only the 
fundamental transitions, 𝛥𝑣 = ±1, are allowed 
while in the actual data, there wereadditional 
bandspresent corresponding to wave numberclose 
to 2�̅�𝑜𝑠𝑐, 3�̅�𝑜𝑠𝑐, 4�̅�𝑜𝑠𝑐 , …… The additional bands 
are having lesser intensity and are called as 
overtone bands. The occurrence of these 
additional bands is attributed to the selection rule 
∆𝑣 = ±2, ±3, ±4, ……. In this article, we have also 
explained the effect of isotopic substitution on the 
infrared spectroscopy. The expression of 
dissociation energy of molecules is also discussed. 
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