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1. INTRODUCTION 
 Patterns of stochastic nature prevail in the financial 
and economic relations as well as in any other activity 
[1]. For instance financial markets possess suchlike 
peculiarities [2]. The problem of stochastic 
communication measuring technique development is 
topical issue for a score of reasons. In particular when 
producing forecasts of complex processes the 
stochastic factor should be taken into account.  

 It should be noted that statistic or econometric 
approaches prevail in the researches. In practice 
majority of applied researches in the sphere of 
management of capital, securities management etc. the 
stochastic factor is introduced onto the existing models 
without any preliminary content-related analysis 
connected with investigation into identification of the 
objectively reasonable causes for the factor existence. 
Intuitive consideration precedes ordinary models 
reviews. In connection with the foregoing the problem 
of elaboration of methods and criteria which are as 
close as possible to the objective assessment of 
presence or lack of randomness factor in the 
interaction of financial and economic processes is 
relevant. Application of the methods will permit to 
make modeling of financial and economic processes 
with the help of statistic models more established. 
Besides application of estimation methods of 
randomness factor presence does not exclude but 
complements the necessary logical analysis. 

 The problem lies in the quantitative assessment of 
the randomness level in the impact of many factors on 

the successful indication. 

It should be noted that development of objective 
assessment of presence (lack) of randomness factor in 
the interaction or impact of social and economic 
processes will permit to make the process of 
econometric modeling more proved. In particular the 
choice of modeling methods may be clarified. 

The essence of the problem can be clarified with simple 
examples.  

Example1.Interaction of socio-economic processes 
within the frames of economic theory can be 
represented in the form of particular relation having 
the following form: 

1 2( , ,..., , , ) 0nФ x x x y    , (1) 

in which , 1,2,..., ,ix i n y  are variables, which 

characterize relevant processes (they can be either 
deterministic or  accidental); 

  - some random variable (with pre 

determined or indeterminate law of distribution); 

(...,...,...)Ф  - some function.  

Randomness in the interaction of processes 

reflected in (1) is provided by random variable . 

Example2. In the theory and practice of econometric 
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modelling of socio-economic processes quite often the 
following econometric models are used 

1 2( , ,..., , )ny f x x x   , (2) 

In which the symbols in brackets have the same 
meaning as in the previous formula. In this example the 
task is to assess the randomness level in the effect of  

1 2, ,..., nx x x on y . 

Difference between formulas (1) and (2) lies in the fact 
the first one reflects implicit relation and the second 
one reflects direct relation between successful variable 

and factor variables
1 2, ,..., nx x x . 

2. Synthesis of the randomness level criterion 

2.1. Background information 

Concerning initial statistical information, which can 
be used for synthesis and identification of financial-
economic processes, the following assumptions have 
been made. Data on each factor should contain at least 
9 - 12 observations. Factors measured not less than in 
ordinal scale are accepted. First assumption is related 
to chronic non sufficiency and in combination with the 
second one imposes restrictions on the choice of tools 
which can be applied to solve the problem. 

2.2. Criteria for the level of randomness 

The concept of extreme point has been taken as a 
basis of development of randomness level assessment 
indicator of interaction of financial-economic processes 
[3, p. 27]. 

Let the index u  be set by observations

0 1 2 1, , ,..., , 3nu u u u n  . We arrange observations 

iu in the plane in the orthogonal coordinate system, 

one of the axes of which is axis of indexes і equidistant 
from each other and the second axis is the one of u
indicator values changes. Thus the indexes can be 
interpreted as the points of the plane. It should be 
noted that there may be cases when such constructions 

are incorrect. Point is called 

extreme point in case it is a peak as comparing to the 

two neighboring points, that is 
1i iu u  and

1i iu u  , or a trough, and thus 
1i iu u  , and

1i iu u  . The concept of an extreme point is used in 

statistics to form the criteria of factor randomness. The 
level of factor randomness is characterized by the 

number of extreme points in the sequence of 
observations. 

In order to formalize the fact of presence or lack of 

extreme point in the succession 
1

1{ }n

i iu 

 we will 

introduce the simplest random variable – counter, 

which takes only two values: 1 when 
iu is an extreme 

point, 0 –in the contrary case. We shall denote the 

counter with the symbol
ix . 

Further we shall interpret the observations 

1 2 1, ,..., nu u u 
as realization of some unknown but 

continuous density function. It can be seen at once that

u ix  is a random value which takes on values 

0, 1, 2, ..., 2n  (
ix  –characteristic function for 

iu ). 

Value
u can be accepted as a basis for the 

construction of a randomness level criterion and its 
generalizations. But first extreme points properties 
should be studied. 

3. Extreme points properties 

3.1. Some properties of the extreme point’s 
characteristics  

In [3] mathematical expectation and the value of the 

variance
u have been found. They have the following 

form: 

2 16 29
( ) ( 2),  ( ) .

3 90
u u

n
M n D 


    (3) 

Let’s consider the following method of mathematical 
expectation calculation and the value of the variance

u . In the previous paragraph it has been noted that 

random variable 
ix can be constructed using 

characteristic functions. 

Let usU be a set of extreme points of the sequence
1

1{ }n

i iu 

 , and U - its complement. Then, where

( )i U ix I u , where 

1, ,
( )

0,

i

U i

i

u U
I u

u U


 


–Characteristic function. 

, 1,2,..., 2iu i n 
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It can be seen that random variable
ix can be put into consideration in another way. Precisely speaking for 

all ,  1 2i i n   we can set
1 1( , , )i i i ix g u u u  , where 

1,( )( ) 0,
( , , )

0,( )( ) 0.

b a b c
g a b c

b a b c

  
 

  
 

The fact of equivalence of methods for determining a random variable
ix  

follows from the understanding of the fact how set U is constructed: 

1 1{ | ( )( ) 0, 1,2,..., 2}i i i i iU u u u u u i n        . 

For ( )uM  there are equations 

2 2 2 2

1 1 1 1

( ) ( ) ( ) ( 1) ( ).
n n n n

u i i i i

i i i i

M M x M x p x p u U
   

   

          

For extreme points
iu with probability 1 condition

1 1( )( ) 0i i i iu u u u    has been fulfilled. It means that 

the pairs 
1( ,  )i iu u

and
1( ,  )i iu u 

are different at the same time. As far as sequences with independent random 

variables are dealt with density function 
iu is continuous, probability of coincidence of random variables 

1 1,  ,  i i iu u u 
is rather low and it can be neglected. This is what is going to be done. 

Realizations can 
1 1,  ,  i i iu u u 

be set in random order. There are can be only six options for the location of 

these points. In four of them extreme point appears. It means that probability of extreme points in arbitrary 

sequence of three values  1 1, ,  i i iu u u 
equals to 2/3. So, 

( ) 2( 2) /3uM n    . 

Variance ( )uD  can be calculated in the following way. We have 

 
22

( ) ( ) ( )u u uD M M     . 

2
2

2 2

1 2

1 2 3 4 ( 4)( 5)

( ) [ 2 2 ], 2.
n

u i i i i i i i i j

i n n n n n

M M x M x x x x x x x j


  

     

  
       

   
       

The number of terms in each of the four sums is indicated by the indexunder the symbol of the sum and totally 

equals to 
2( 2)n  . In fact, 

22 2( 3) 2( 4) ( 4)( 5) ( 2)n n n n n n           . 

Decomposition
2

( )uM  by sums of squares and mixed products of values for 0,1,2,...j  is convenient for 

further calculations.  
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Let’s calculate consequently values 

2

1 2( ),  ( ),  ( ),  ( ),  3.i i i i i i i jM x M x x M x x M x x j     

From equality
2

i ix x it follows that 
2

( ) 2 /3iM x  . 

To calculate
1( )i iM x x 

it is necessary to consider four consecutive values:
1 1 2, , ,i i i iu u u u  

. Reasoning in 

the same way as in finding ( 1)ip x  , we analyze 4! = 24 options of possible orders of magnitude of the values

1 1 2, , ,i i i iu u u u  
. As far as

1 1( ) ( 1)i i i iM x x p x x   , we fix only the options where the extreme points 

are 
iu and

1iu 
. There are 10 such options. Consequently, 

1( ) 5/12i iM x x   . 

To calculate
2( )i iM x x 

, it is necessary to consider five consecutive observations 𝑢𝑗 , 𝑗 = 𝑖 − 1, 𝑖 , 𝑖 + 1, 𝑖 +

3, 𝑖 + 3 and analyze5! = 120 options of arrangement of values ju , extract those for which points 
2,i iu u 

are 

extreme ones. There are 54 such options. Consequently,
2( ) 9 / 20.i iM x x    

In order to calculate ( )i i jM x x  for 3j  , it should be noted that 
1 1( , , )i i i ix g u u u  and

1 1( , )i j i j i j i jx g u u u      , that is there are random values ,i i jx x  which are independent. It means that,

( ) ( ) ( ) 4/9, 4i i j i i jM x x M x M x j     Thus, 

2

2 5 9
( ) ( 2) 2 ( 3) 2 ( 4)

3 12 20

4 4 16 29
( 4)( 5) ( 2) ,

9 9 90

uD n n n

n
n n n

         


    

 

which was to be proved. 

Let us consider one more (analytical) method of finding ( )uM  . It essentially makes use of the assumption of 

the existence of a continuous density function for 
iu .  

We introduce the vector random variable В ( , , ,)x y z  , components of which are independent and each 

component of each is arranged by uniform law with density function f on the set [0,1]3. Such an area (unit cube) is 

taken only for reasons of simplicity of the calculations.Then 

3[0,1]

1fd   , 

Where   –variable of integration of a random value .  

As it has been noted before there can be six options ofthe arrangement of the realizations of the values

, ,x y z : 
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,  ,  ( ) & ( ),  ( ) & ( ),  

( ) & ( ),  ( ) & ( ).

x y z x y z x y z x z x y z x z

x y z x z x y z x z

         

     
 

 
Let us find the probability of realizing each arrangement. For example for the case x y z  we have 

11 1 1 2 3

0 0 0 0 0 0 0

1
.

2 6 6

yx x

x y
y z

x x
dxdydz dz dy dx ydy dx dx




    
          

   
        

Probabilities of other locations are calculated similarly. For symmetry reasons, they are also equal to 1/6. Hence we 
obtain that 

( ) 1 ( 1) 0 ( 0) 2/3i i iM x p x p x       . 

 
For what follows we need a random variable, which is given by 

sgn( )sgn( )       , 

where 

1,  0,
sgn( ) ( 0)

1,  0,

a
a a

a

 
 

 
; 

, ,    – Identically distributed random variables with a continuous density factor. Then variable random  has 

distribution law represented in the table 1.1. 

Table 1, the law of distribution of a random variable  

  -1 1 

( )p   1/3 2/3 

 

This fact follows from consideration of the table 2. 

When using random variable , we can define random variable  , which will act as a counter of extreme 

points: 

𝜋𝜉={
1, 𝑖𝑓𝜉𝑒𝑥𝑡𝑟𝑒𝑚𝑢𝑚𝑝𝑜𝑖𝑛𝑡;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

  

Corresponding formula has the following form 
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1
(1 )

2
   . 

Table 2 Options of the relations between random variables , ,    

Relation between

, ,    
  ( )p   

,      +1 1/6 

,      +1 1/6 

,      -1 1/6 

,      +1 1/6 

,      +1 1/6 

,      -1 1/6 

The law of distribution for  is represented in the table 3. 

Table 3 The law of distribution of discrete random variable   

  0 1 

( )p   1/3 2/3 

 

The provided constructions can be used when programming of algorithms for assessing the level of randomness 
of relationships and the inter relationships of the socio-economic processes. 

4. Properties of a sequence of random variables 
2

1{ }n

i ix 

  

Let us investigate the nature of the dependence of random variables in the sequence
2

1{ }n

i ix 

 . Its elements act as 

values of characteristic function (.)UI sets of extreme pointsU , representing the factor u .  

Acquainted measure of the dependence of a sequence of random variables is the modulus of the difference 
between the mathematical expectation of the product of these values and the product of their mathematical 
expectations [4, p. 383]. In our case we have 

𝛼𝑖𝑗  = |𝑀(𝑥𝑖𝑥𝑖+𝑗) − 𝑀(𝑥𝑖)𝑀(𝑥𝑖+𝑗)|. 
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For 0,1,2,3j  values ( )i i jM x x  have been calculated as above. For these j we have

0 1 22/9,  1/36,  1/180,  0,  2j j        . Thus it can be seen that random variables

1 2 2, ,..., nx x x  are partly dependent.  

The following option of determining the partial dependence of a sequence of random variables 1 2, ,...  will be 

used. Random variables 1 2, ,...  can be called k-dependent, if
,0 ;

0,  ,         

i j

l

l ij

b j k

j k








 

 
 


 , where – there are 

some positive constants. 

According to this definition random variables 1 2 2, ,..., nx x x  are an example of 2-dependent random variables 

with parameters 2/9,ib  1 1/8,ib   2 1/5,ib   0,  2.i jb j    

There is 

Lemma1. Let 1 2, ,..., n   and 1 2, ,..., n    – are two sequences of random variables, each of them is k-

dependent inside its sequence and values from different sequences are pair wise independent. Then random values 

of the sequence 1 2, ,..., n   , where , 1,2,...,i i i i n   are k-dependent.  

Lemma 1 admits two consecutive generalizations. 

Lemma2. Let random variables 1 2, ,..., n   are k1-dependent.Random variables 1 2, ,..., n   are 2k -

dependent. And random values 'i
 and ''i

 are l -dependent,
' '', {1,2,..., }i i n . Then random variables

1 2, ,..., n   , where , 1,2,...,i i i i n   , are no more than 1 2max( , , )k k l -dependent. 

Proof. Let 1 2max( , , )j k k l . Then random values ,i i  do not depend on random values ,i j i j   . 

thus 

| ( ) ( ) ( ) | | ( ) ( ) ( ) |

| ( ) ( ) ( ) ( ) | 0.

j i i j i i j i i i j i j i i i j i j

i i i j i j i i i j i j

M M M M M M

M M M M

         

     

     

   

    

 
 

Which was to be proved. 

Lemma3. Let random values 1 2, ,...,p p p

n   are pk -dependent, 1,2,...,p P ; random values

' "

' ",p p

i i
 

are
' "p p

k -dependent 
' '', {1,2,..., }i i n . Then random values 1 2, ,..., n   , where

1

P
p

i i

p

 


 , 

are no more than ' "
' ",

max max( ),max( )p p pp p p
k k 

  
-dependent. 

This property is proved by the same method as the previous ones. 
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From the properties of the nature of the dependence of the terms of k -dependent random variables it follows, 

that with an increase in the number of factors in

1

P
p

i i

p

 


 (that is with an increase of Р) degree of dependence 

between random variables (number k) does not decrease. 

Let us find the probability of the fact that 1k  consecutive sequence points 0 1 1 , ,...,  ( 3)nu u u k n  
are extreme.  

Case 1k   (2-dependence) has already been studied above: 1 2( 1) 5/12.p x x    

Let 2k  .  
To determine the number of three extreme points in succession, it is necessary to consider five successive 

realizations of random variables 1 1 2 3, , , ,i i i i iu u u u u    . Totally there can be5! 120 sequences of the 

location of the arrangement of these values. Out of them in 32 cases points 1 2, ,i i iu u u  will be extreme ones. So,  

1 2

4
( 1)

15
i i ip x x x    . 

Hence the conditional probability of point 2iu  being extreme under condition that the previous two points

1,i iu u  are extreme ones, equals to 

𝑝(𝑥𝑖+2 = 1|𝑥𝑖𝑥𝑖+1 = 1)=
16

25
. 

In case 3k  we have 

1 2 3( 1)i i i ip x x x x     1 2 3 1 2( 1) ( 1| 1)i i i i i i ip x x x p x x x x       . 

As far random variables ix  2-dependent, then 

3 1 2 3 1 2( 1| 1) ( 1| 1)i i i i i i ip x x x x p x x x          . 

It means, 

1 2 3

4 16 64
( 1)

15 25 375
i i i ip x x x x       . 

By induction we have general formula 

2( 1) 1

1

1 4
( ... 1)

3 5

k

i i i kp x x x

 

 

 
   

 
. 

 
In what follows we need a generalization of the Kolmogorov inequality to the case of 2-dependent random 

variables 2 2, ,...,i nx x x   [5]. 
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Theorem 1. For characteristic function ( )UI u x there is inequality 

1

2
2

1 2
1

2 16( 2) 29
max | | 1 .

3 90

k

i
k n

i

k
p x k t t

  


 
   

     
   

  

Proof; To prove Kolmogorov in equality is just like proving the inequality
2p t , where p – is probability that 

at least one of the inequalities is accomplished 

1

2

1

2 16( 2) 29
| | , 1,2,..., 2.

3 90

k

i

i

k
x k t k n



  
    

 
  

Let the random variables , 1,2,..., 2kY k n  , be so that 1Y  , if the inequalities are accomplished 

1

2

1

1

2

1

для

2 16( 2) 29
| | ,

3 90

2 16( 2) 29
| | ,   1,2,..., 1.

3 90

i

i

k

i

i

x t

k
x k t k

 








  
   

 

  
    

 





 

0Y  in all the other cases. Then 

1 2 2{ ... 1}np P Y Y Y      . 

As far as

2

1

n

k

k

Y




 equals to 0 or 1, then the inequality is always accomplished 

2

1

1
n

k

k

Y




 . 

Hence 

2
2 2

1 1

2 16 29
( 2)

3 90

n n

k i

k i

n
M Y x n

 

 

    
    

   
  . (4) 

Let us estimate the terms of the left-hand side of the in equality (4). For this we set 

2 2

1 1 1

2 2 2
( 2) ( ).

3 3 3

n k n

k i i

i i k

U x n x k x


 

   

   
         
   
    
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Then 

 

2 2
2

1 1

2

1

2 2
( 2)

3 3

2
2 .

3

n k

k i k i

i i

k

k k i k k

i

M Y x n M Y x k

M Y U x k M Y U



 



       
         

        

  
   

  

 



 (5) 

 
Next, we need to prove that the second term of (5) is non negative.  
The property of the 2-dependence of random variables creates additional difficulties in proving this fact. Further 
we have 

2

1 1 1

2 2 2
( ) ( )

3 3 3

k n k

k k k

k

M Y U x k M Y x x  

  



   

    
        

    
  

3

2 1

1

2

1 2
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2 2 2 2
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3 3 3 3
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


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



 





 

 

  
         

 

 
      

 





 


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1 2

1 1
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( )( ) ( )( )
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k k kM Y x x x x 

 

 

 

 


     


   

3 2

2 1
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2 2 2 2
( ) ( ) ( )( )

3 3 3 3
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k k

k

x x x x 

 

 

 

  

        
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 
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1 1 1 2
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


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2
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3 3 3 3

n

k k k
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x x x x






 
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3 3

1 1

1 1

2 2
( ) ( ) ( 3) ( )

3 3
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k k k k kM Y x x M Y x k M Y x 
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 
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2 4
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2 1 2 2

2 2 4
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3 3 9
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2 2 1 1

2 2 4
( ) ( ) ( ) ( )

3 3 9
k k k k k k k kM Y x M Y x M Y M Y x x        

1 1 1 2

2 2 4
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3 3 9
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2 2 4
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2 2 4
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3 3 9
k k k k k k k kM Y x M Y x M Y M Y x x      
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2 2 4
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3 3 9
k k k k kM Y x M Y x M Y    

1 1

1 1
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 

 
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k k k k kkM Y x M Y x x kM Y
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 



   

In this way, 
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1 1 1
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( ) ( )

3 3 3

k n k

k k k

k

M Y U x k M Y x x  

  


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    
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    
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2 2

1

2 8
( ) ( ) ( ).

3 9

k

k k k k kkM Y x M Y x x kM Y



 



   

Let’s consider each term separately. Using the generalization of the conditional mathematical expectation property 

for the case of a vector argument and the fact that 1 2( , ,..., )k kY f x x x , we have 

1 1 1 2( ) [ ( | , ,..., )]k k k k kM Y x x M Y M x x x x x    

for 1,2,..., 2.k    

Let us calculate the mathematical expectation 1 1 2( | , ,..., )k kM x x x x x  for 1,2,..., 2.k    
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For 1k   and k  , correspondingly, we have 

 

That is why 

4 3 2

1

1

16 64 16 40 16
( ) ( 2) ( ).
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k k kM Y x x k M Y



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Further 
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For 1,2,..., 2k   we have 
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For 1k   and k  we have correspondingly 
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That is why 

 

The second term has the following form 

 

Finally, 
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1
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(0,236 0,708) ( )kk M Y . 

Thus starting with the 3k  , the quantity 

1

2
( ( ))

3

k

k kM Y U x k

 

  

is nonnegative. From this and from (5) we have 
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
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Random variable 0kY  is only when 
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k
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That is why 
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k
Y x k t Y


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Comparing inequalities (4) and (6), we have 
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2

1 2 2

16 29 16 29
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 
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Hence taking into account that 
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 

   
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   
  , 

We have
2 1pt  . 

Generalization of Kolmogorov inequality has been proved. 

 

Next we estimate the law of distribution U of extreme points of the sequence 0 1 1, ,..., nu u u  . To do this we pass 

to the random variables 

2
( ) , 1,2,..., 2

3
i i i ix x M x x i n      , and use the theorem 19.1.1 [4], which states that if

1 0 1{..., , , ,...}x x x is stationary sequence of m-dependent random variables then 

22

0 0

1

( ) 2 ( )j

j

M x M x x




    

And if
2 0  , then 

2

2

1

1 1
lim

2

z un

j
n

j

p x z e du
n



  




 

 
  

 
  . 

 

The conditions of this theorem for random variables 1 2 2, ,..., nx x x  are obviously satisfied. Consequently, with 

increasing of n the distribution of the number of extreme points U  divided by ( )u n  , asymptotically tends 

to normal. 

DISCUSSION & CONCLUSION 

In the first paragraph of the article concept and 
properties of extreme points of time series have been 
considered in detail. Properties of the partial 
dependence of extreme points and their generalization 
have been identified. Generalization of Kolmogorov 
inequality has been achieved. Asymptotic normal 
distribution of partially dependant random variables 
has been proven. This research can benefit the area of 
social and financial economics, as often they inherently 
include stochastic factors by their nature, and this 
modelling approach can be applied. 
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