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ABSTRACT: In this study preparation and thermal, electrochemical, photophysical properties of the compounds arereported. New series of compounds consisting of 4-Allylamino-N-4-aminobenzenesulfonamide-1,8-naphthalimide, 4-Amino-N-4-amino-N-(2-pyrimidinyl) benzenesulfonamide-1,8-naphthalimide and 4-Allylamino-N-4-amino-N-(2-pyrimidinyl) benzenesulfonamide-1,8-naphthalimide were synthesized via sonic method from intermediate 4-nitro-1,8-naphthalimide by imidation, reduction and allylation reactions. These compounds were characterized by thin layerchromatography (TLC), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance (1HNMR), 13C-NMR, liquid chromatography, UV–Vis spectroscopy and fluorimetry. Newacceptor-donor compounds were obtained with the photoluminescence quantum yields (PLQY) of 33.68-79.70% insolution and 0.85-3.39% in non-doped solid film. The synthesized dyes absorb electromagnetic radiation in the range of434-440 nm and emit solid films exhibited fluorescence in the range of 561-614 nm. The ionization potentials of thesynthesized dyes were found to range from 6.00 eV to 6.09 eV.
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1. INTRODUCTIONSynthetic fluorescent labels are indispensable tools forquantitative detection in various fields of modern sciences[1].Conjugated compounds containing both donor andacceptor moieties have been extensively synthesized andstudied because of their potential applications inelectronics and optoelectronics [1, 2]. Several fluorescentdyes reported in the literature suffer from seriousdrawbacks such as their cumbersome synthesis, limitedavailability and biological interference [4].Furthermore, many organic fluorescent dyes wereprepared and their properties were investigated. Onegroup of fluorescent dyes are 1,8-naphthalimidederivatives, which make a well-known class of dyes with alarge range of applications [1,2,3].Derivatives of 1, 8-naphthalimide are widely used forvarious applications [1]. They were utilized in such fieldsas coloration and brightening of polymers [1], as laseractive media [2,3], fluorescent markers in biology [4],anticancer agents [1], analgesics in medicine [2],fluorescence switchers and sensors [1,2], as electron-transporting and emitting materials in light emittingdiodes [4,5]. They were also used in liquid crystaldisplays [1] and as ion probes [2,3]. Derivatives of 1,8-naphthalimide generally have high electron affinity due tothe existence of an electron-deficient center [4] and

display good electron-transporting or hole-blockingcapabilities.1,8-Naphthalimide moiety can be easilyfunctionalized [4]. By introducing different electron-donating substituents at C-4 position of 1,8-naphthalimidemoiety the emission color of the compounds can bereadily tuned from near infrared to pure blue [2,3,4].Substitution of electron donating groups usually raises thefluorescence emission, particularly when amino andallylamino groups are situated at the C-4 position [2,3].Ultrasound is a kind of sound wave with the highfrequency. When the ultrasound propagates in themedium, a series of physical and chemical changes occurin the media. The changes are accompanied withultrasonic effect, mainly including the mechanical effect,acoustic cavitation effect, heating and chemical effects.Ultrasonic cavitation effect refers to the dynamic processof cavitation bubble with micro-gas-nuclear in the liquid[2].When the ultrasonic treatment is applied in solid-liquid reaction, it can greatly enhance the rate of solid-liquid heterogeneous reaction, realizes uniform mixing ofreactants, accelerates the spread of reactants andproducts, promotes the formation of the new productphase and controls their particle size and distribution[29].Recently, ultrasound method has been employed forsynthesis of organic components due to offering aversatile and facile pathway [2,3]. Based on our
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knowledge there are no report on sonic synthesis ofbenzenesulfonamide substituent in 1,8-naphthalimdedyes.
2. EXPERIMENTAL METHODS
2.1 Materials and Instrumentation4-Nitro-1, 8-naphthalicanhydride, 4 Aminobenzenesulfonamide (sulfanilamide), 4-amino-N-(2-pyrimidinyl) benzenesulfonamide (sulfadiazine) (Sigma-Aldrich),4-amino-N-2-hiazoylbenzenesulfonamide(sulfathiazole) (Sigma Aldrich) and hydrochloric acid andzinc chloride (Merck Co.) were used without furtherpurification. The FTIR spectra were recorded on aPerkinElmer Spectrum GX II FT-IROne spectrophotometeron a KBr disc. The 1H-NMR and 13C-NMR spectra (chemicalshifts are given as δ in ppm) were recorded on a BrukerDRX AVANCE spectrometer operating at 500 MHz. Theelemental analysis CHNS was determined on a Costechinstruments (Elemental Combustion System 4010).Differential scanning calorimetry (DSC) measurementswere carried out using a DSC (DSC 214 Polyma NETZ5CH)under nitrogen environment. Cyclic voltammetrymeasurements were performed on a PGSTAT 302,electrochemical experiments were carried out at roomtemperature using a three-electrode cell consisting of aplatinum coil as counter electrode, a glassy carbonworking electrode, and a silver wire as referenceelectrode. 0.1 M solution of tetrabutylammoniumhexafluorophosphate (n-Bu4NPF6) was used as supportingelectrolyte at a scan rate of 100 mVs1. For themeasurements, silver reference electrode was calibratedagainst ferrocene/ferrocenium (Fc/Fc+) redox couple asan internal standard [2].Theoretical calculations and molecular simulations hadbeen carried with Gaussian 09 and Gauss view softwareand carried out with B3LYP hybrid functional mixed withbasis set of 6-311G. For evaluated compounds groundstate geometries were optimized with no symmetrylimitations to a local minimum, which was followed byfrequency calculations also all simulations wereconducted with polarizable continuum model usingdichloromethane as solvent as implemented [2,3].The UV–Vis absorption spectra were recorded on a Cecil9200 double beam spectrophotometer and thefluorescence spectra were taken on a Perkin and ElmerLS50B spectrofluorimeter with both excitation andemission slits set at 10 nm and controlled by a personalcomputer data processing unit. To recordphotoluminescence decay curves dependencies on laserflux, with Pico Quant LDH-D-C-375 laser with wavelengthequals 374 nm as the excitation source were used and theionization potential (IP) of the vacuum deposited filmswas obtained using photoelectron emission spectrometryin air [2,3].
3. SYNTHESIS OF INTERMEDIATES AND DYES
3.1 General Procedure for the Preparation of
IntermediateA mixture of 0.02 mol 4-nitro-1,8-naphthalimide (1)and 0.02 mol amine in 10 ml water was sonicated at 35

KHz in a sonic bath maintained at 25 °C. Thin-layerchromatography (TLC) was performed at the end of thereaction, and then the contents were filtered and thesynthesis route is presented in Scheme 1.
4-Nitro-N-4-aminobenzenesulfonamide-1,8-
naphthalimide (2)Y=78%; MP=315.5 °C; FT-IR (KBr)(cm-1): 3355: NH str.,1711, 1658: C=O str., 1521, 1325: NO2 str., 1236: SO2 str.;1HNMR (500MHz, CDC13, δ/ppm): 7.60 (s, 2H, NH2), 7.65-7.68 (d, 2H, J=7.5Hz), 7.82-7.86 (d, 2H, J=7.1 Hz), 7.92 (t,1H),8.21-8.26 (d, 4H, J=7.8 Hz); Elem. Anal. Calcd. (%) forC18H11N3O6S: C, 54.40; N, 10.57; H, 2.77. Found: C, 54.49;N, 10.39; H, 2.82.
4-Nitro-N-4-amino-N-(2-pyrimidinyl)
benzensulfonamide-1,8-naphthalimide (3)Y=71%; MP=319 °C; FT-IR (KBr) (cm-1): 3256: NH str.,1708, 1650: C=O str., 1517, 1339: NO2 str., 1241: SO2 str.;1HNMR (500MHz, CDC13, δ/ppm): 6.98-7.03 (t, 1H), 7.55-7.62 (d, 2H, J=7.3Hz), 7.78-7.84 (d, 3H, J=7.5 Hz), 8.11-8.19(d, 2H),8.34-8.39 (d, 4H, J=7.7 Hz), 11.22 (s, 1H, NH); Elem.Anal. Calcd. (%) for C22H13N5O6S: C, 55.57; N, 14.73; H,2.73. Found: C, 54.89; N, 14.11; H, 2.19.
4-Nitro-N-4-amino-N-2-thiazoyl
benzenesulfonamide-1,8-naphthalimide (4)Y=74%; MP=281 °C; FTIR (KBr) (Cm-1): 3225: NH str.,1700, 1658: C=O str., 1521, 1345: NO2 str., 1239: SO2 str.;1HNMR (500MHz, CDC13, δ/ppm): 6.78-6.81 (d, 1H, J=4.8Hz), 7.21-7.28 (d, 1H, J=6.5 Hz), 7.42-7.49 (d, 2H, J=7.2Hz),7.63-7.72 (d, 2H, J=7.1 Hz), 7.98-8.05 (d, 2H),8.12 (t, 1H),8.44-8.49 (d, 4H, J=7.5 Hz), 11.34 (s, 1H, NH); Elem. Anal.Calcd. (%) for C21H12N4O6S2: C, 52.5; N, 11.66; H, 2.50.Found: C, 53.17; N, 12.28; H, 2.34.
3.2 General Procedure for the Preparation of

Organic DyesA mixture of 0.03 mol intermediate (2, 3 or 4) and wasdissolved in 8 mL of acetic acid and 0.015 mol of Fepowder was added in the mixture. The reaction solutionwas sonicated at 35 KHz in a sonic bath maintained at 25°C for 30 min. Thin-layer chromatography (TLC) wasperformed at the end of the reaction, and then thecontents were filtered.
4-Allylamino-N-4-aminobenzenesulfonamide-1, 8-
naphthalimide (Dye 1)Y=82%; MP=229.6 °C; FT-IR (KBr) (cm-1): 3368: NH str.,1695, 1642: C=O str., 1244, 1159: SO2 str.; 1HNMR(500MHz, CDC13, δ/ppm): 3.23 (s, 1H, NH allyl), 4.19 (s,2H, allyl NCH2), 4.85 (1H, =CH2 allyl),5.28 (s, 1H, CH=allyl), 6.82-6.89 (d, 1H, J=7.6Hz), 7.17-7.25 (d, 2H,
J=7.5Hz), 7.52 (s, 2H, NH2), 7.68 (t, 1H), 7.74-7.59 (d, 3H,
J=7.1 Hz), 8.17-8.23 (d, 3H, J=7.7 Hz); Elem. Anal. Calcd.(%) for C21H17N3O4S: C, 61.91; N, 10.32; H, 4.17. Found: C,62.15; N, 10.69; H, 4.95.
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4-Amino-N-4-amino-N-(2-pyrimidinyl)
benzenesulfonamide-1,8-naphthalimide (Dye 2)Y=71%; MP=259.5 °C; FTIR (KBr) (Cm-1): 3389: NH str.,1690, 1640: C=O str., 1239, 1144: SO2 str.; 1HNMR(500MHz, CDC13, δ/ppm): 6.78-6.86 (d, 1H, J=7.2 Hz), 7.12(t, 1H), 7.26-7.34 (d, 2H, J=7.3 Hz), 7.41 (s, 2H, NH2), 7.54-7.58 (d, 3H, J=7.5 Hz), 7.82 (t, 1H), 7.89-7.93 (d, 3H, J=7.6Hz), 8.07-8.16 (d,1H, J=7.7 Hz), 10.98 (s, 1H, NH); Elem.Anal. Calcd. (%) for C22H15N5O4S: C, 59.32; N, 15.73; H,3.37. Found: C, 58.63; N, 14.70; H, 3.72.

4-Allylamino-N-4-amino-N-(2-pyrimidinyl)
benzenesulfonamide-1,8-naphthalimide (Dye 3)Y=75%; MP=267.8 °C; FTIR (KBr) (Cm-1): 3379: NH str.,1695, 1653: C=O str., 1236, 1158: SO2 str.; 1HNMR(500MHz, CDC13, δ/ppm): 6.82-6.88 (d, 1H), 6.92-6.97 (d,1H), 7.16-7.21 (d, 1H, J=7.3Hz), 7.32-7.38 (d, 2H, J=7.3 Hz),7.56 (s, 2H, NH2), 7.62-7.69 (d, 2H, J=7.3 Hz), 7.95 (t, 1H),7.91-7.98 (d, 3H, J=7.5 Hz), 11.17 (s, 1H, NH); Elem. Anal.Calcd. (%) for C21H14N4O4S2: C, 56.0; N, 12.44; H, 3.11.Found: C, 56.68; N, 12.86; H, 3.61.
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Scheme 1 Synthesis route of Dyes 1-3

4. RESULTS AND DISCUSSION
4.1 Geometries and frontier orbitalsThe molecular configuration and the frontier molecularorbital distribution of Dye 1-3 were analyzed by densityfunctional theory (DFT) calculations using Gaussian 09software at the B3LYP/6-311G (d,p) level. The theoreticalgeometries and the distribution of HOMO and LUMO ofsynthesized dyes are presented in Figure 1.
4.2 UV and Fluorescence propertiesAbsorption and photoluminescence (PL) spectra of thedilute solutions of compounds (10-5 M) and solid films areshown in Figure 2 and 3 respectively and wavelengthranges of the main absorption bands and fluorescencewere shown in Table 1.According to the Figure 2, the region of strongabsorption bands (~ 413-440 nm) can be attributed to thelocalized aromatic π-π* transitions of donor units incompounds. The shift to longer wavelengths observed forcompounds especially for dye 2, which is suggested anincrease in the conjugation level of the π orbitals [2]. Theeffect of different solvents on the emission spectra ofcompounds were studied and bathochromic shift of PLmaxima of solutions increases with increasing dielectric

constant of solvents in the order Isopropanol (ε=17.9),Methanol (ε=32.7) and Acetonitrile (ε=37.5), with anoverall different relocation. The wavelengths of maximumintensities exhibited bathochromic shifts leads to strongred shift from the lowest polarity (Isopropanol) to highestpolarity (Acetonitrile) ambient, compared to theindividual D and A emission spectra and PL spectra moveto longer wavelengths with increasing polarity of solvent,showing a strong positive solvatochromism and asdisplayed previously in other D-Atype of molecules [2,3].Furthermore, increases of solvents polarity observed CTenergy red shifted and investigated in less LES (LocalExcited State) parameter and higher energy differencebetween CTaxial and CTequatorial [2,3,4] and indicates thatexisted certain degree of CT character with a large dipolemoment which is derived from low lying singlet excitedstate [2,3].Moreover solvent sensitivity to polarity can beanalyzed in terms of difference dipole moments in theground and excited states [2,3].The spectra of synthesizeddyes in solid film state (Figure 3) shows orange color fordye 1, green color for dye 2 and dye 3 near to yellow colorrespectively and they are characterized by chromaticitycoordinates and criteria of CIE coordinates and submittedin Figure S6.
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Figure 1 HOMO and LUMO of dyes 1-3 calculated at B3LYP/6-311G (d,p) levelThe value of PLQY for dye 1 was 79.70% in acetonitrileand versus of solid film was failed with value 0.85% andPLQY of dye 2 and 3 also in Acetonitrile and solid filmwere 66.94 and 1.78% (for dye 2) and 33.68% and 3.39%(for dye 3) respectively.Low value of PLQY of the solid filmof dyes can apparently be explained by large dipolemoment of the compounds. However, many luminophoresare highly luminescent in dilute solutions and lightemissions are often quenched in the solid state due toaggregation of their chromophoric units in the condensedphase [2]. ACQ affect the solutions and dispersions of dyes1-3, in water/THF mixtures at room temperature, werestudied in Figures 4 and Figures S2.The π-π supramolecular interactions also play animportant role in the ACQ. This data (Figure 4-b) showsthat the properly disturbing the close molecular packingand diminishing the intermolecular quenching effects are

advantageous for increasing the PLQY value of solutionsphases.In contrast, although π–π interactions, it shows loosepacking with weak molecular interactions, thus resultingin non-radiative of pathways through rotation or vibration[2]. Fluorescence decay profiles of solutions and solidfilms were recorded using single photon countingspectrofluorimeter. PL decays were monitored at thecorresponding emission maximum of the dyes andsoftware experimental fluorescence allowed the fitting ofvalue the decay spectra 1 until 1.3 and consideredexcitation of instrument response 374 nm. According tothe Figure 5 and Table S1, appearing of the slower decaydyes for dye 2 in solid film, occurred 4.64 ns that probablyreasons are associated with the weak intermolecularinteractions or crystalline aggregate formations in theneat films [3]. Moreover, the spectra of life time for dyes insolutions presented in Figure S3.
Table 1 Spectroscopic properties and PLQY of the dyes specified in mode of non-polar and polar solutions and

solid film
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Figure 2 Absorption spectra and photoluminescence (PL) spectra of dilute solutions in different solvents (10-5 M)
of dyes 1-3 (Excitation=330nm)
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Figure 4 (a) PL spectra of Dye 1 in the THF/Water mixtures and (b) The inset plot of Dyes indicated the
relationship between PL maximum intensities and water volume fraction in THF/Water mixtures
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4.3 Electrochemical and Photoelectrical
PropertiesThe electrochemical characteristics of dyes aresummarized in Table 2. As well as Cyclic Voltammetry(CV) of dyes are shown in Figure S1. The ionizationpotential (IPCV) values of dyes were estimated from theonset potentials of the first oxidation event after

calibration of the measurements against ferrocene. IPCV forcompounds were found to be range of 5.67-5.70V.Furthermore, Ionization potentials (IPPE) for vacuumdeposited layers of compounds were taken fromphotoelectron emission spectra and presented in Figure 6.Electron affinities (EACV) of dyes1, 2 and 3were estimatedto be 3.12, 3, 13 and 3.19 eV, respectively.
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Table 2. Investigation of Electrochemical properties and HOMO/LUMO energies of dyes 1-3

Compound Eox

(V)
Ered

(V)
EACV

(eV)
IPCV

(eV)
LUMO
(eV)

HOMO
(eV)

Egopt

(eV)
IPPE

(eV)
1 0.79 –1.19 3.12 5.70 3.09 5.43 2.58 6.00
2 0.77 –1.21 3.13 5.68 3.05 6.55 2.55 6.09
3 0.76 –1.20 3.19 5.67 2.98 6.50 2.48 6.03

Explanations about parameters of Table:Eox: Potential of onset of oxidation and estimated from CVEred:Potential of onset of reduction and estimated from CVEACV: Calculated with the relation EACV= −(|IPCV|− Egopt)IPCV = Ionization potentials calculated with the relation |-(1.4×1e× Eox vs Fc/V) −	4.6|	eV	LUMO: Energy level Estimated by DFT, HOMO: Energy level Estimated by DFTEgopt: Calculated with the relation 1239.75/λ of UV spectra (diluted Acetonitrile)
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Figure 6 Photoelectron emission spectra of compounds

5.CONCLUSIONSIn this study, a series of novel 1,8-naphthalimde dyesincorporated with benzenesulfonamide heterocycles withultrasound method was prepared. The synthesized dyesand their intermediates were characterized. According tothe photophysical properties of prepared dyes theabsorption spectra were in the range of 434-440 nm insolid film, while photoluminescence spectra were in therange of 561-614 nm. Furthermore, the result ofionization potential of dyes demonstrated values between6-6.09 eV. The PLQY of dyes in acetonitrile were highvalues and aggregation caused quenching (ACQ) for dyesreported. Moreover the  of PL Decay spectra of dye 3 washigher than dye 1 and 2 in solid film (7.07 (19.83%)).Based on our knowledge there are no report on sonicsynthesis of benzenesulfonamide substituent in 1,8-naphthalimde dyes.
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